ARMA spectral estimation of narrow-band processes via model reduction

The problem of estimating autoregressive moving average ARMA models for narrowband processes is considered. The following approach is proposed. Estimate a high-order autoregressive (AR) approximation of the process. By model reduction, based on a truncated internally balanced realization or optimal Hankel-norm model reduction, reduce the order of this high-order AR estimate to find a lower-order ARMA model. This algorithm gives ARMA spectral estimates with excellent resolution properties, without using iterative numerical minimization methods as for the maximum-likelihood method. How to take the narrowband assumption into account in the model reduction step is discussed in detail. >

[1]  Bo Wahlberg,et al.  Estimation Of Autoregressive Moving‐Average Models Via High‐Order Autoregressive Approximations , 1989 .

[2]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[3]  J. Rissanen Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials , 1973 .

[4]  B. Wahlberg Model reductions of high-order estimated models : the asymptotic ML approach , 1989 .

[5]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[6]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[7]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[8]  Claude Gueguen,et al.  Exact likelihood for stationary vector autoregressive moving average processes , 1986 .

[9]  L. Marple A new autoregressive spectrum analysis algorithm , 1980 .

[10]  L. Ljung,et al.  Design variables for bias distribution in transfer function estimation , 1986, The 23rd IEEE Conference on Decision and Control.

[11]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[12]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[13]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[14]  C. K. Yuen,et al.  Digital spectral analysis , 1979 .

[15]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[16]  L. Scharf,et al.  Statistical design of autoregressive-moving average digital filters , 1979 .

[17]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[18]  Brian D. O. Anderson,et al.  Recursive algorithm for spectral factorization , 1974 .

[19]  Surendra Prasad,et al.  Improved ARMA spectral estimation using the canonical variate method , 1987, IEEE Trans. Acoust. Speech Signal Process..

[20]  W. Larimore System Identification, Reduced-Order Filtering and Modeling via Canonical Variate Analysis , 1983, 1983 American Control Conference.

[21]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[22]  David Q. Mayne,et al.  Linear identification of ARMA processes , 1982, Autom..

[23]  C. Zheng,et al.  ; 0 ; , 1951 .

[24]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .