Compression bounds for Lipschitz maps from the Heisenberg group to L1
暂无分享,去创建一个
[1] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[2] Graham A. Niblo,et al. Asymptotic invariants of infinite groups , 1993 .
[3] P. Wojtaszczyk. Banach Spaces For Analysts: Preface , 1991 .
[4] T. Laakso. Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .
[5] James R. Lee,et al. Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[6] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .
[7] F. S. Cassano,et al. On the structure of finite perimeter sets in step 2 Carnot groups , 2003 .
[8] Ronald F. Gariepy. FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .
[9] Robert Krauthgamer,et al. Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[10] Yuval Rabani,et al. An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..
[11] Robert Krauthgamer,et al. Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[12] Bruce Kleiner,et al. Realization of Metric Spaces as Inverse Limits, and Bilipschitz Embedding in L1 , 2011, 1110.2406.
[13] U. Lang,et al. Bilipschitz Embeddings of Metric Spaces into Space Forms , 2001 .
[14] Pekka Koskela,et al. Sobolev met Poincaré , 2000 .
[15] Peter W. Jones. Lipschitz and bi-Lipschitz Functions. , 1988 .
[16] P. Assouad. Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .
[17] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[18] P. Assouad. Plongements lipschitziens dans Rn , 2003 .
[19] Bruce Kleiner,et al. Metric differentiation, monotonicity and maps to L1 , 2009, 0907.3295.
[20] Assaf Naor,et al. . 20 24 v 2 [ cs . D S ] 18 N ov 2 00 9 A ( log n ) Ω ( 1 ) integrality gap for the Sparsest Cut SDP , 2009 .
[21] J. Wells,et al. Embeddings and Extensions in Analysis , 1975 .
[22] Gideon Schechtman,et al. Affine Approximation of Lipschitz Functions and Nonlinear Quotients , 1999 .
[23] J. Cheeger,et al. Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.
[24] James R. Lee,et al. Extending Lipschitz functions via random metric partitions , 2005 .
[25] Luigi Ambrosio,et al. Some Fine Properties of Sets of Finite Perimeter in Ahlfors Regular Metric Measure Spaces , 2001 .
[26] Satish Rao,et al. Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.
[27] I. Bárány. LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .
[28] Jeff Cheeger,et al. Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .
[29] Yuval Rabani,et al. Improved lower bounds for embeddings into L1 , 2006, SODA '06.
[30] D. Burago,et al. A Course in Metric Geometry , 2001 .
[31] Assaf Naor,et al. A $(\log n)^{\Omega(1)}$ Integrality Gap for the Sparsest Cut SDP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[32] Y. Rabani,et al. Improved lower bounds for embeddings into L 1 , 2006, SODA 2006.
[33] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[34] Frank Thomson Leighton,et al. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.
[35] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[36] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[37] James R. Lee,et al. Euclidean distortion and the sparsest cut , 2005, STOC '05.
[38] L. Ambrosio. Fine Properties of Sets of Finite Perimeter in Doubling Metric Measure Spaces , 2002 .
[39] Bruce Kleiner,et al. Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property , 2008, 0808.3249.
[40] Satish Rao,et al. Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.
[41] Bruce Kleiner,et al. On the differentiability of Lispschitz maps from metric measure spaces to Banach spaces , 2006 .
[42] Joram Lindenstrauss,et al. On nonlinear projections in Banach spaces. , 1964 .
[43] Romain Tessera. Quantitative property A, Poincaré inequalities, Lp-compression and Lp-distortion for metric measure spaces , 2007 .
[44] S. Brendle,et al. Manifolds with 1/4-pinched curvature are space forms , 2007, 0705.0766.
[45] David B. Shmoys,et al. Cut problems and their application to divide-and-conquer , 1996 .
[46] Patrice Assouad. Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .
[47] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[48] P. Enflo. On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .
[49] Jeff Cheeger,et al. On the structure of spaces with Ricci curvature bounded below. II , 2000 .
[50] N. Aronszajn,et al. Differentiability of Lipschitzian mappings between Banach spaces , 1976 .
[51] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[52] Nathan Linial. Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.
[53] Bruno Franchi,et al. Rectifiability and perimeter in the Heisenberg group , 2001 .
[54] F. Montefalcone. Some relations among volume, intrinsic perimeter and one-dimensional restrictions of $BV$ functions in Carnot groups , 2005 .
[55] J. Heinonen,et al. From local to global in quasiconformal structures. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[56] N. Biggs. GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION: (Algorithms and Combinatorics 2) , 1990 .
[57] Goulnara Arzhantseva,et al. Compression functions of uniform embeddings of groups into Hilbert and Banach spaces , 2006 .
[58] Farhad Shahrokhi,et al. The maximum concurrent flow problem , 1990, JACM.
[59] P. Pansu,et al. Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .
[60] Nisheeth K. Vishnoi,et al. The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.
[61] Michel X. Goemans,et al. Semideenite Programming in Combinatorial Optimization , 1999 .
[62] E. Giorgi,et al. Su una teoria generale della misura (r − 1)-dimensionale in uno spazio adr dimensioni , 1954 .
[63] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[64] David Avis,et al. The cut cone, L1 embeddability, complexity, and multicommodity flows , 1991, Networks.
[65] Anupam Gupta,et al. Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.