Compression bounds for Lipschitz maps from the Heisenberg group to L1

We prove a quantitative bi-Lipschitz non-embedding theorem for the Heisenberg group with its Carnot–Carathéodory metric and apply it to give a lower bound on the integrality gap of the Goemans–Linial semidefinite relaxation of the sparsest cut problem.

[1]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[2]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[3]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[4]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .

[5]  James R. Lee,et al.  Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[6]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[7]  F. S. Cassano,et al.  On the structure of finite perimeter sets in step 2 Carnot groups , 2003 .

[8]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[9]  Robert Krauthgamer,et al.  Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[10]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[11]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[12]  Bruce Kleiner,et al.  Realization of Metric Spaces as Inverse Limits, and Bilipschitz Embedding in L1 , 2011, 1110.2406.

[13]  U. Lang,et al.  Bilipschitz Embeddings of Metric Spaces into Space Forms , 2001 .

[14]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[15]  Peter W. Jones Lipschitz and bi-Lipschitz Functions. , 1988 .

[16]  P. Assouad Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .

[17]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[18]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[19]  Bruce Kleiner,et al.  Metric differentiation, monotonicity and maps to L1 , 2009, 0907.3295.

[20]  Assaf Naor,et al.  . 20 24 v 2 [ cs . D S ] 18 N ov 2 00 9 A ( log n ) Ω ( 1 ) integrality gap for the Sparsest Cut SDP , 2009 .

[21]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[22]  Gideon Schechtman,et al.  Affine Approximation of Lipschitz Functions and Nonlinear Quotients , 1999 .

[23]  J. Cheeger,et al.  Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.

[24]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[25]  Luigi Ambrosio,et al.  Some Fine Properties of Sets of Finite Perimeter in Ahlfors Regular Metric Measure Spaces , 2001 .

[26]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[27]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[28]  Jeff Cheeger,et al.  Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .

[29]  Yuval Rabani,et al.  Improved lower bounds for embeddings into L1 , 2006, SODA '06.

[30]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[31]  Assaf Naor,et al.  A $(\log n)^{\Omega(1)}$ Integrality Gap for the Sparsest Cut SDP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Y. Rabani,et al.  Improved lower bounds for embeddings into L 1 , 2006, SODA 2006.

[33]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[34]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[35]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[36]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[37]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[38]  L. Ambrosio Fine Properties of Sets of Finite Perimeter in Doubling Metric Measure Spaces , 2002 .

[39]  Bruce Kleiner,et al.  Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property , 2008, 0808.3249.

[40]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[41]  Bruce Kleiner,et al.  On the differentiability of Lispschitz maps from metric measure spaces to Banach spaces , 2006 .

[42]  Joram Lindenstrauss,et al.  On nonlinear projections in Banach spaces. , 1964 .

[43]  Romain Tessera Quantitative property A, Poincaré inequalities, Lp-compression and Lp-distortion for metric measure spaces , 2007 .

[44]  S. Brendle,et al.  Manifolds with 1/4-pinched curvature are space forms , 2007, 0705.0766.

[45]  David B. Shmoys,et al.  Cut problems and their application to divide-and-conquer , 1996 .

[46]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[47]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[48]  P. Enflo On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .

[49]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[50]  N. Aronszajn,et al.  Differentiability of Lipschitzian mappings between Banach spaces , 1976 .

[51]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[52]  Nathan Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[53]  Bruno Franchi,et al.  Rectifiability and perimeter in the Heisenberg group , 2001 .

[54]  F. Montefalcone Some relations among volume, intrinsic perimeter and one-dimensional restrictions of $BV$ functions in Carnot groups , 2005 .

[55]  J. Heinonen,et al.  From local to global in quasiconformal structures. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  N. Biggs GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION: (Algorithms and Combinatorics 2) , 1990 .

[57]  Goulnara Arzhantseva,et al.  Compression functions of uniform embeddings of groups into Hilbert and Banach spaces , 2006 .

[58]  Farhad Shahrokhi,et al.  The maximum concurrent flow problem , 1990, JACM.

[59]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[60]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[61]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[62]  E. Giorgi,et al.  Su una teoria generale della misura (r − 1)-dimensionale in uno spazio adr dimensioni , 1954 .

[63]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[64]  David Avis,et al.  The cut cone, L1 embeddability, complexity, and multicommodity flows , 1991, Networks.

[65]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.