A robust interaction control approach for underwater vehicle manipulator systems

Abstract In underwater robotic interaction tasks (e.g., sampling of sea organisms, underwater welding, panel handling, etc) various issues regarding the uncertainties and complexity of the robot dynamic model, the external disturbances (e.g., sea currents), the steady state performance as well as the overshooting/undershooting of the interaction force error, should be addressed during the control design. Motivated by the aforementioned considerations, this paper presents a force/position tracking control protocol for an Underwater Vehicle Manipulator System (UVMS) in compliant contact with a planar surface, without incorporating any knowledge of the UVMS dynamic model, the exogenous disturbances or the contact stiffness model. Moreover, the proposed control framework guarantees: (i) certain predefined minimum speed of response, maximum steady state error as well as overshoot/undershoot concerning the force/position tracking errors, (ii) contact maintenance and (iii) bounded closed loop signals. Additionally, the achieved transient and steady state performance is solely determined by certain designer-specified performance functions/parameters and is fully decoupled from the control gain selection and the initial conditions. Finally, both simulation and experimental studies clarify the proposed method and verify its efficiency.

[1]  Konstantinos Kyriakopoulos,et al.  Persistent Autonomy: the Challenges of the PANDORA Project , 2012 .

[2]  Charalampos P. Bechlioulis,et al.  A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems , 2014, Autom..

[3]  Jon Rigelsford,et al.  Modelling and Control of Robot Manipulators , 2000 .

[4]  Tzyh Jong Tarn,et al.  A dynamic model of an underwater vehicle with a robotic manipulator using Kane's method , 1996, Auton. Robots.

[5]  Scott McMillan,et al.  Efficient dynamic simulation of an underwater vehicle with a robotic manipulator , 1995, IEEE Trans. Syst. Man Cybern..

[6]  M.A. Grosenbaugh,et al.  An accurate four-quadrant nonlinear dynamical model for marine thrusters: theory and experimental validation , 2000, IEEE Journal of Oceanic Engineering.

[7]  J. Barbera,et al.  Contact mechanics , 1999 .

[8]  Antonella Ferrara,et al.  AMADEUS: advanced manipulation for deep underwater sampling , 1997, IEEE Robotics Autom. Mag..

[9]  Andreas Birk,et al.  Dexrov: Dexterous undersea inspection and maintenance in presence of communication latencies , 2015 .

[10]  Pere Ridao,et al.  Grasping for the Seabed: Developing a New Underwater Robot Arm for Shallow-Water Intervention , 2013, IEEE Robotics & Automation Magazine.

[11]  Giuseppe Casalino,et al.  Floating Underwater Manipulation: Developed Control Methodology and Experimental Validation within the TRIDENT Project , 2014, J. Field Robotics.

[12]  Laxman M. Waghmare,et al.  Robust task-space control of an autonomous underwater vehicle-manipulator system by PID-like fuzzy control scheme with disturbance estimator , 2017 .

[13]  H. Freud Mathematical Control Theory , 2016 .

[14]  Wan Kyun Chung,et al.  Robust coordinated motion control of an underwater vehicle-manipulator system with minimizing restoring moments , 2011 .

[15]  Dimos V. Dimarogonas,et al.  A Robust Force Control Approach for Underwater Vehicle Manipulator Systems , 2016 .

[16]  Nilanjan Sarkar,et al.  Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization , 2001 .

[17]  Marc Carreras,et al.  An Intervention-AUV learns how to perform an underwater valve turning , 2014, OCEANS 2014 - TAIPEI.

[18]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[19]  Charalampos P. Bechlioulis,et al.  Robust Partial-State Feedback Prescribed Performance Control of Cascade Systems With Unknown Nonlinearities , 2011, IEEE Transactions on Automatic Control.

[20]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[21]  David M. Lane,et al.  Hybrid position/force control of a hydraulic underwater manipulator , 1996 .

[22]  Ron P. Podhorodeski,et al.  Redundancy resolution for underwater mobile manipulators , 2010 .

[23]  Giuseppe Casalino,et al.  Manipulation and Transportation With Cooperative Underwater Vehicle Manipulator Systems , 2017, IEEE Journal of Oceanic Engineering.

[24]  Bruno Siciliano,et al.  Resolved-acceleration control of robot manipulators: A critical review with experiments , 1998, Robotica.

[25]  Nilanjan Sarkar,et al.  External force control for underwater vehicle-manipulator systems , 2001, IEEE Trans. Robotics Autom..

[26]  Jinwhan Kim,et al.  Coordinated motion control in task space of an autonomous underwater vehicle–manipulator system , 2015 .

[27]  Gustavo Arechavaleta,et al.  A Passivity-Based Model-Free Force–Motion Control of Underwater Vehicle-Manipulator Systems , 2013, IEEE Transactions on Robotics.

[28]  Marc Carreras,et al.  Learning multiple strategies to perform a valve turning with underwater currents using an I-AUV , 2015, OCEANS 2015 - Genova.

[29]  S. Ali A. Moosavian,et al.  Multiple Impedance Control for object manipulation by a dual arm underwater vehicle–manipulator system , 2014 .

[30]  Matthew W. Dunnigan,et al.  Tracking control scheme for an underwater vehicle-manipulator system with single and multiple sub-regions and sub-task objectives , 2011 .

[31]  Fumin Zhang,et al.  Future Trends in Marine Robotics [TC Spotlight] , 2015, IEEE Robotics & Automation Magazine.

[32]  Suguru Arimoto,et al.  Dynamics and control of a set of dual fingers with soft tips , 2000, Robotica.

[33]  Nilanjan Sarkar,et al.  A unified force control approach to autonomous underwater manipulation , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[34]  Junku Yuh,et al.  Design and Control of Autonomous Underwater Robots: A Survey , 2000, Auton. Robots.

[35]  Panos Marantos,et al.  UAV State Estimation Using Adaptive Complementary Filters , 2016, IEEE Transactions on Control Systems Technology.

[36]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[37]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[38]  Matthew W. Dunnigan,et al.  Self-tuning position and force control of an underwater hydraulic manipulator , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[39]  Ronan Boulic,et al.  An inverse kinematics architecture enforcing an arbitrary number of strict priority levels , 2004, The Visual Computer.

[40]  Junku Yuh,et al.  Real-time center of buoyancy identification for optimal hovering in autonomous underwater intervention , 2010, Intell. Serv. Robotics.

[41]  Fumin Zhang,et al.  Future Trends in Marine Robotics , 2015 .

[42]  Pere Ridao,et al.  Intervention AUVs: The Next Challenge , 2014 .

[43]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[44]  Giuseppe Casalino,et al.  Whole body control of a dual arm underwater vehicle manipulator system , 2015, Annu. Rev. Control..

[45]  Penny Probert Smith,et al.  UNION: underwater intelligent operation and navigation , 1998, IEEE Robotics Autom. Mag..

[46]  Jean-Jacques E. Slotine,et al.  The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design , 1990 .

[47]  Pierre-Brice Wieber,et al.  Hierarchical quadratic programming: Fast online humanoid-robot motion generation , 2014, Int. J. Robotics Res..

[48]  Carlos Silvestre,et al.  TRIDENT: Recent improvements about autonomous underwater intervention missions , 2012 .

[49]  Pere Ridao,et al.  I-AUV Mechatronics Integration for the TRIDENT FP7 Project , 2015, IEEE/ASME Transactions on Mechatronics.

[50]  P. Ridao,et al.  Multipurpose autonomous underwater intervention: A systems integration perspective , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[51]  Junku Yuh,et al.  Underwater Robots , 2012, Springer Handbook of Robotics, 2nd Ed..

[52]  Dana R. Yoerger,et al.  Preliminary experiments in model-based thruster control for underwater vehicle positioning , 1999 .

[53]  Francisco José Madrid-Cuevas,et al.  Automatic generation and detection of highly reliable fiducial markers under occlusion , 2014, Pattern Recognit..

[54]  Nilanjan Sarkar,et al.  External force control for underwater vehicle-manipulator systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[55]  Kazuhiro Kosuge,et al.  Force control of robot floating on the water utilizing vehicle restoring force , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[56]  Nilanjan Sarkar,et al.  Impedance control of underwater vehicle-manipulator systems (UVMS) , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[57]  Fabio Bruno,et al.  Kinematic performances evaluation of a hydraulic underwater manipulator , 2017, OCEANS 2017 - Aberdeen.

[58]  Jana Fuhrmann,et al.  Guidance And Control Of Ocean Vehicles , 2016 .

[59]  Gianluca Antonelli,et al.  Task-priority redundancy resolution for underwater vehicle-manipulator systems , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[60]  Giuseppe Casalino,et al.  A Novel Practical Technique to Integrate Inequality Control Objectives and Task Transitions in Priority Based Control , 2016, J. Intell. Robotic Syst..

[61]  Jean-Jacques E. Slotine,et al.  A general framework for managing multiple tasks in highly redundant robotic systems , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[62]  H. W. Shim,et al.  Workspace control system of underwater tele-operated manipulators on ROVs , 2009, OCEANS 2009-EUROPE.

[63]  Lionel Lapierre,et al.  Position/Force Control of an Underwater Mobile Manipulator , 2003, J. Field Robotics.

[64]  Stefano Chiaverini,et al.  Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators , 1997, IEEE Trans. Robotics Autom..

[65]  Fabio Bruno,et al.  The CoMAS Project: New Materials and Tools for Improving the In situ Documentation, Restoration, and Conservation of Underwater Archaeological Remains , 2016 .

[66]  Dong-Soo Kwon,et al.  Control of underwater manipulators mounted on an ROV using base force information , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[67]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[68]  Pierre-Brice Wieber,et al.  Kinematic Control of Redundant Manipulators: Generalizing the Task-Priority Framework to Inequality Task , 2011, IEEE Transactions on Robotics.

[69]  Gabriel Oliver,et al.  Reconfigurable AUV for intervention missions: a case study on underwater object recovery , 2012, Intell. Serv. Robotics.

[70]  G. T. Russell,et al.  Evaluation and reduction of the dynamic coupling between a manipulator and an underwater vehicle , 1998 .

[71]  Charalampos P. Bechlioulis,et al.  Prescribed Performance Adaptive Control for Multi-Input Multi-Output Affine in the Control Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[72]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[73]  Junku Yuh,et al.  Underwater autonomous manipulation for intervention missions AUVs , 2009 .