Modeling, Control and Energy Efficiency of Underwater Snake Robots

[1]  M. G. Shcheglova,et al.  Inertia and drag of elliptic cylinders oscillating in a fluid , 1998 .

[2]  Q Zhu,et al.  Numerical analysis of a unique mode of locomotion: vertical climbing by Pacific lamprey , 2011, Bioinspiration & biomimetics.

[3]  Wisama Khalil,et al.  Dynamic Modeling and simulation of a 3-D Hybrid structure Eel-Like Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[4]  Kristin Ytterstad Pettersen,et al.  Modeling of underwater snake robots moving in a vertical plane in 3D , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Zhiqiang Cao,et al.  The dynamic analysis of the backward swimming mode for biomimetic carangiform robotic fish , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Pål Liljebäck,et al.  Stability analysis of snake robot locomotion based on averaging theory , 2010, 49th IEEE Conference on Decision and Control (CDC).

[7]  Pål Liljebäck,et al.  Biologically Inspired Swimming Snake Robots : Modeling , Control and Experimental Investigation , 2016 .

[8]  Jan Tommy Gravdahl,et al.  Energy efficiency of underwater robots , 2015 .

[9]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[10]  Mathieu Porez,et al.  Note on the swimming of an elongated body in a non-uniform flow , 2013, Journal of Fluid Mechanics.

[11]  Nicolas Marchand,et al.  Motion Control of a Three-Dimensional Eel-like Robot Without Pectoral Fins , 2008 .

[12]  Pål Liljebäck,et al.  A review on modelling, implementation, and control of snake robots , 2012, Robotics Auton. Syst..

[13]  Toshio Takayama,et al.  Amphibious 3D active cord mechanism "HELIX" with helical swimming motion , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  S. Grillner On the generation of locomotion in the spinal dogfish , 2004, Experimental Brain Research.

[15]  Pål Liljebäck,et al.  Modeling of underwater snake robots , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Auke Jan Ijspeert,et al.  Online Optimization of Swimming and Crawling in an Amphibious Snake Robot , 2008, IEEE Transactions on Robotics.

[17]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[18]  James P. Ostrowski,et al.  Open-Loop Verification of Motion Planning for an Underwater Eel-Like Robot , 2000, ISER.

[19]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[20]  C. Breder The locomotion of fishes , 1926 .

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[23]  李斌,et al.  An Amphibious Snake-like Robot: Design and Motion Experiments on Ground and in Water , 2009 .

[24]  M. Lighthill Aquatic animal propulsion of high hydromechanical efficiency , 1970, Journal of Fluid Mechanics.

[25]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[26]  J. Gravdahl,et al.  Controllability and Stability Analysis of Planar Snake Robot Locomotion , 2011, IEEE Transactions on Automatic Control.

[27]  Jenhwa Guo,et al.  A waypoint-tracking controller for a biomimetic autonomous underwater vehicle , 2006 .

[28]  Örjan Ekeberg,et al.  A combined neuronal and mechanical model of fish swimming , 1993, Biological Cybernetics.

[29]  I. Arvanitakis,et al.  Trajectory optimization satisfying the robot's kinodynamic constraints for obstacle avoidance , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[30]  Meyer Nahon,et al.  Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery , 2012, Bioinspiration & biomimetics.

[31]  E. Kelasidi,et al.  Multi-objective optimization for efficient motion of underwater snake robots , 2016, Artificial Life and Robotics.

[32]  Michael Wetter,et al.  Generic Optimization Program , 1998 .

[33]  M. Lighthill Large-amplitude elongated-body theory of fish locomotion , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  Joel W. Burdick,et al.  Underwater locomotion from oscillatory shape deformations , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[35]  Tetsuya Iwasaki,et al.  Optimal Gaits for Mechanical Rectifier Systems , 2011, IEEE Transactions on Automatic Control.

[36]  Shigeo Hirose,et al.  Snakes and Strings , 2002 .

[37]  S. Grillner,et al.  Neural networks that co-ordinate locomotion and body orientation in lamprey , 1995, Trends in Neurosciences.

[38]  Joseph Lamprey Robots , 2000 .

[39]  Bin Li,et al.  Locomotion control of a novel snake-like robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[40]  John J. Myers,et al.  Handbook of Ocean and Underwater Engineering , 1969 .

[41]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[42]  Tamara A. Knutsen,et al.  DESIGNING AN UNDERWATER EEL-LIKE ROBOT AND DEVELOPING ANGUILLIFORM LOCOMOTION , 2001 .

[43]  Auke Jan Ijspeert,et al.  Swimming and Crawling with an Amphibious Snake Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[44]  James P. Ostrowski,et al.  A geometric approach to anguilliform locomotion: modelling of an underwater eel robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[45]  C. E. Jordan Coupling Internal and External Mechanics to Predict Swimming Behavior: A General Approach , 1996 .

[46]  Kristi A. Morgansen,et al.  Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles , 2007, IEEE Transactions on Robotics.

[47]  E. Kelasidi,et al.  Serpentine motion control of snake robots for curvature and heading based trajectory - parameterization , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[48]  Pål Liljebäck,et al.  Integral line-of-sight for path following of underwater snake robots , 2014, 2014 IEEE Conference on Control Applications (CCA).

[49]  Kristin Ytterstad Pettersen,et al.  A control-oriented model of underwater snake robots , 2015, 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014).

[50]  Peter P. Pott,et al.  Flow-aided path following of an underwater robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[51]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[52]  Douwe Stapersma,et al.  Comparison study on moving and transportation performance of transportation modes , 2009 .

[53]  Craig A. Woolsey,et al.  Underwater vehicle control and estimation in nonuniform currents , 2013, 2013 American Control Conference.

[54]  S. Ma,et al.  Analysis of snake movement forms for realization of snake-like robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[55]  Kristin Y. Pettersen,et al.  Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns , 2015, Robotics and biomimetics.

[56]  Paolo Fiorini,et al.  FILOSE for Svenning: A Flow Sensing Bioinspired Robot , 2014, IEEE Robotics & Automation Magazine.

[57]  Bin Li,et al.  An amphibious snake-like robot with novel gaits on ground and in water , 2011 .

[58]  J.T. Gravdahl,et al.  UAV formation flight using 3D potential field , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[59]  James P. Ostrowski,et al.  Experiments in closed-loop control for an underwater eel-like robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[60]  W. O. Friesen,et al.  Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming , 2011, Journal of Experimental Biology.

[61]  Wisama Khalil,et al.  Dynamic Modeling of Robots using Recursive Newton-Euler Techniques , 2010, ICINCO.

[62]  Nicolas Marchand,et al.  Multi-variable constrained control approach for a three-dimensional eel-like robot , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[63]  Frédéric Boyer,et al.  Multi-physics model of an electric fish-like robot: Numerical aspects and application to obstacle avoidance , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[64]  Xiaobo Tan,et al.  Control-oriented averaging of tail-actuated robotic fish dynamics , 2013, 2013 American Control Conference.

[65]  Pål Liljebäck,et al.  A simplified model of planar snake robot locomotion , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[66]  Frédéric Boyer,et al.  Macro-continuous computed torque algorithm for a three-dimensional eel-like robot , 2006, IEEE Transactions on Robotics.

[67]  T. Williams Phase coupling by synaptic spread in chains of coupled neuronal oscillators. , 1992, Science.

[68]  Gregory H. Miller,et al.  Neurotechnology for biomimetic robots , 2002 .

[69]  Nicolas Marchand,et al.  Feedback design for 3D movement of an Eel-like robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[70]  D A Paley,et al.  The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information , 2013, Journal of Experimental Biology.

[71]  Xiaobo Tan,et al.  Target-tracking control design for a robotic fish with caudal fin , 2013, Proceedings of the 32nd Chinese Control Conference.

[72]  Auke Jan Ijspeert,et al.  Controlling swimming and crawling in a fish robot using a central pattern generator , 2008, Auton. Robots.

[73]  Leigh McCue,et al.  Handbook of Marine Craft Hydrodynamics and Motion Control [Bookshelf] , 2016, IEEE Control Systems.

[74]  S. Grillner,et al.  Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. , 1991, Annual review of neuroscience.

[75]  L. Lapierre,et al.  Path following control for an eel-like robot , 2005, Europe Oceans 2005.

[76]  S. Grillner,et al.  The neural network underlying locomotion in lamprey-synaptic and cellular mechanisms , 1991, Neuron.

[77]  James P. Ostrowski,et al.  A Framework for Steering Dynamic Robotic Locomotion Systems , 2003, Int. J. Robotics Res..

[78]  Frédéric Boyer,et al.  Dynamic Modeling and Simulation of a 3-D Serial Eel-Like Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[79]  Williams,et al.  Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional navier-stokes equations and Newton's laws of motion , 1998, The Journal of experimental biology.

[80]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[81]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[82]  Philippe Lemoine,et al.  The eel-like robot , 2009, ArXiv.

[83]  I. Borazjani,et al.  On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming , 2010, Journal of Experimental Biology.

[84]  Eric D Tytell,et al.  The hydrodynamics of eel swimming II. Effect of swimming speed , 2004, Journal of Experimental Biology.

[85]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[86]  Kristin Ytterstad Pettersen,et al.  Stability analysis of underwater snake robot locomotion based on averaging theory , 2014, 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014).

[87]  Jasmine A. Nirody,et al.  The mechanics of slithering locomotion , 2009, Proceedings of the National Academy of Sciences.

[88]  Pål Liljebäck,et al.  Waypoint guidance control of snake robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[89]  Sheryl Coombs,et al.  Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi) , 2003, Journal of Experimental Biology.

[90]  K. Y. Pettersen,et al.  Energy efficiency of underwater snake robot locomotion , 2015, 2015 23rd Mediterranean Conference on Control and Automation (MED).

[91]  Hiroshi Igarashi,et al.  Path and posture planning for walking robots by artificial potential field method , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[92]  広瀬 茂男,et al.  Biologically inspired robots : snake-like locomotors and manipulators , 1993 .

[93]  J. Gray Directional Control of Fish Movement , 1933 .

[94]  Kristin Ytterstad Pettersen,et al.  Developments in Snake Robot Modeling and Locomotion , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[95]  Joel W. Burdick,et al.  Trajectory stabilization for a planar carangiform robot fish , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[96]  P. Holmes,et al.  The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model , 1982, Journal of mathematical biology.

[97]  J. Gray The mechanism of locomotion in snakes. , 1946, The Journal of experimental biology.

[98]  John D. Penrose,et al.  Hydrodynamic tests on a plate in forced oscillation , 2007 .

[99]  Jan Tommy Gravdahl,et al.  Integral Line-of-Sight Guidance for Path Following Control of Underwater Snake Robots: Theory and Experiments , 2017, IEEE Transactions on Robotics.

[100]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[101]  V. Pareto Manual of Political Economy: A Critical and Variorum Edition , 2014 .

[102]  S. Grillner,et al.  On the Generation and Performance of Swimming in Fish , 1976 .

[103]  K.M. Lynch,et al.  Mechanics and control of swimming: a review , 2004, IEEE Journal of Oceanic Engineering.

[104]  P. Olver Nonlinear Systems , 2013 .

[105]  Auke Jan Ijspeert,et al.  AmphiBot II: An Amphibious Snake Robot that Crawls and Swims using a Central Pattern Generator , 2006 .

[106]  G. Taylor Analysis of the swimming of long and narrow animals , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[107]  James P. Ostrowski,et al.  Motion planning for anguilliform locomotion , 2003, IEEE Trans. Robotics Autom..

[108]  Kristin Ytterstad Pettersen,et al.  Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents , 2008, 2008 47th IEEE Conference on Decision and Control.

[109]  Pål Liljebäck,et al.  Mamba - A waterproof snake robot with tactile sensing , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[110]  Bin Li,et al.  Serpentine locomotion of a snake-like robot in water environment , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[111]  Lotfi A. Zadeh,et al.  Optimality and non-scalar-valued performance criteria , 1963 .

[112]  A G Feldman,et al.  Locomotion of fish evoked by electrical stimulation of the brain. , 1974, Brain research.

[113]  Auke Jan Ijspeert,et al.  AmphiBot I: an amphibious snake-like robot , 2005, Robotics Auton. Syst..

[114]  J. Gray Studies in Animal Locomotion , 1936 .

[115]  Asgeir J Sørensen,et al.  Relative velocity control and integral line of sight for path following of autonomous surface vessels: Merging intuition with theory , 2014 .

[116]  Frédéric Boyer,et al.  Fast Dynamics of an Eel-Like Robot—Comparisons With Navier–Stokes Simulations , 2008, IEEE Transactions on Robotics.

[117]  Turgut Sarpkaya,et al.  In-line force on a cylinder translating in oscillatory flow , 1985 .

[118]  Kristin Ytterstad Pettersen,et al.  A waypoint guidance strategy for underwater snake robots , 2014, 22nd Mediterranean Conference on Control and Automation.

[119]  Jan Tommy Gravdahl,et al.  Modeling and simulation for automatic control , 2002 .

[120]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[121]  Michael N. Vrahatis,et al.  Particle swarm optimization for minimax problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[122]  P. Koumoutsakos,et al.  Simulations of optimized anguilliform swimming , 2006, Journal of Experimental Biology.

[123]  Frédéric Boyer,et al.  Improved Lighthill fish swimming model for bio-inspired robots: Modeling, computational aspects and experimental comparisons , 2014, Int. J. Robotics Res..

[124]  A. Isidori Nonlinear Control Systems , 1985 .

[125]  B. Jayne Swimming in constricting (Elaphe g. guttata) and nonconstricting (Nerodia fasciata pictiventris) colubrid snakes , 1985 .

[126]  Frédéric Boyer,et al.  Dynamic Modeling of a 3-D Serial Eel-Like Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[127]  Kristin Ytterstad Pettersen,et al.  Global kappa-exponential way-point maneuvering of ships: Theory and experiments , 2006, Autom..

[128]  J. R. Morison,et al.  The Force Exerted by Surface Waves on Piles , 1950 .