BRVO: Predicting pedestrian trajectories using velocity-space reasoning

We introduce a novel, online method to predict pedestrian trajectories using agent-based velocity-space reasoning for improved human–robot interaction and collision-free navigation. Our formulation uses velocity obstacles to model the trajectory of each moving pedestrian in a robot’s environment and improves the motion model by adaptively learning relevant parameters based on sensor data. The resulting motion model for each agent is computed using statistical inferencing techniques, including a combination of ensemble Kalman filters and a maximum-likelihood estimation algorithm. This allows a robot to learn individual motion parameters for every agent in the scene at interactive rates. We highlight the performance of our motion prediction method in real-world crowded scenarios, compare its performance with prior techniques, and demonstrate the improved accuracy of the predicted trajectories. We also adapt our approach for collision-free robot navigation among pedestrians based on noisy data and highlight the results in our simulator.

[1]  Dinesh Manocha,et al.  Generalized velocity obstacles , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Jianbo Shi,et al.  Multi-hypothesis motion planning for visual object tracking , 2011, 2011 International Conference on Computer Vision.

[3]  Kai Oliver Arras,et al.  People tracking with human motion predictions from social forces , 2010, 2010 IEEE International Conference on Robotics and Automation.

[4]  Hubert Klüpfel,et al.  Evacuation Dynamics: Empirical Results, Modeling and Applications , 2009, Encyclopedia of Complexity and Systems Science.

[5]  Wolfram Burgard,et al.  Learning Motion Patterns of People for Compliant Robot Motion , 2005, Int. J. Robotics Res..

[6]  Luc Van Gool,et al.  You'll never walk alone: Modeling social behavior for multi-target tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[7]  Dinesh Manocha,et al.  Simulating heterogeneous crowd behaviors using personality trait theory , 2011, SCA '11.

[8]  Gerta Köster,et al.  Avoiding numerical pitfalls in social force models. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Dinesh Manocha,et al.  Leveraging Long-Term Predictions and Online Learning in Agent-Based Multiple Person Tracking , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[10]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[11]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[12]  G. McLachlan,et al.  The EM Algorithm and Extensions: Second Edition , 2008 .

[13]  Ninad Pradhan,et al.  Robot crowd navigation using predictive position fields in the potential function framework , 2011, Proceedings of the 2011 American Control Conference.

[14]  Dinesh Manocha,et al.  Realtime Multilevel Crowd Tracking Using Reciprocal Velocity Obstacles , 2014, 2014 22nd International Conference on Pattern Recognition.

[15]  Ryosuke Shibasaki,et al.  Tracking multiple people using laser and vision , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Andreas Schadschneider,et al.  Automatic Extraction of Pedestrian Trajectories from Video Recordings , 2010 .

[17]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[18]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[19]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[20]  A. Bayen,et al.  On sequential data assimilation for scalar macroscopic traffic flow models , 2012 .

[21]  Mubarak Shah,et al.  Abnormal crowd behavior detection using social force model , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Stéphane Donikian,et al.  Experiment-based modeling, simulation and validation of interactions between virtual walkers , 2009, SCA '09.

[23]  Wolfram Burgard,et al.  People Tracking with Mobile Robots Using Sample-Based Joint Probabilistic Data Association Filters , 2003, Int. J. Robotics Res..

[24]  Dinesh Manocha,et al.  PLEdestrians: a least-effort approach to crowd simulation , 2010, SCA '10.

[25]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.

[26]  Christian Vollmer,et al.  Learning to navigate through crowded environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[27]  Takeo Kanade,et al.  Tracking in unstructured crowded scenes , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[28]  Thomas Bak,et al.  Trajectory planning for robots in dynamic human environments , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[30]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[31]  Dinesh Manocha,et al.  Virtual Tawaf: A case study in simulating the behavior of dense, heterogeneous crowds , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[32]  Mark H. Overmars,et al.  A Predictive Collision Avoidance Model for Pedestrian Simulation , 2009, MIG.

[33]  Maja J. Mataric,et al.  A laser-based people tracker , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[34]  Alexandre M. Bayen,et al.  An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices , 2008, 2008 47th IEEE Conference on Decision and Control.

[35]  Luis E. Ortiz,et al.  Who are you with and where are you going? , 2011, CVPR 2011.

[36]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control (Synthesis Lectures on Computer Graphics and Animation) , 2008 .

[37]  Andreas Krause,et al.  Robot navigation in dense human crowds: the case for cooperation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[38]  Mark H. Overmars,et al.  A Velocity-Based Approach for Simulating Human Collision Avoidance , 2010, IVA.

[39]  Andreas Krause,et al.  Unfreezing the robot: Navigation in dense, interacting crowds , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Dinesh Manocha,et al.  Predicting Pedestrian Trajectories Using Velocity-Space Reasoning , 2012, WAFR.

[41]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[42]  Dinesh Manocha,et al.  The Hybrid Reciprocal Velocity Obstacle , 2011, IEEE Transactions on Robotics.

[43]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Geoffrey J. Gordon,et al.  Better Motion Prediction for People-tracking , 2004 .

[45]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[46]  Ko Nishino,et al.  Tracking Pedestrians Using Local Spatio-Temporal Motion Patterns in Extremely Crowded Scenes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Christian Laugier,et al.  Dynamic Obstacle Avoidance in uncertain environment combining PVOs and Occupancy Grid , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[48]  Dinesh Manocha,et al.  Interactive navigation of multiple agents in crowded environments , 2008, I3D '08.

[49]  James D. Annan,et al.  An efficient climate forecasting method using an intermediate complexity Earth System Model and the ensemble Kalman filter , 2004 .

[50]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[51]  Daniel Cohen-Or,et al.  Fitting behaviors to pedestrian simulations , 2009, SCA '09.

[52]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[53]  Dinesh Manocha,et al.  Way portals: efficient multi-agent navigation with line-segment goals , 2012, I3D '12.

[54]  Siddhartha S. Srinivasa,et al.  Planning-based prediction for pedestrians , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[55]  Joel W. Burdick,et al.  Robotic motion planning in dynamic, cluttered, uncertain environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[56]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[57]  Henry A. Kautz,et al.  Voronoi tracking: location estimation using sparse and noisy sensor data , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).