Efficient MUS Enumeration of Horn Formulae with Applications to Axiom Pinpointing

The enumeration of minimal unsatisfiable subsets (MUSes) finds a growing number of practical applications, that includes a wide range of diagnosis problems. As a concrete example, the problem of axiom pinpointing in the \(\mathcal {EL}\) family of description logics (DLs) can be modeled as the enumeration of the group-MUSes of Horn formulae. In turn, axiom pinpointing for the \(\mathcal {EL}\) family of DLs finds important applications, such as debugging medical ontologies, of which SNOMED CT is the best known example. The main contribution of this paper is to develop an efficient group-MUS enumerator for Horn formulae, HgMUS, that finds immediate application in axiom pinpointing for the \(\mathcal {EL}\) family of DLs. In the process of developing HgMUS, the paper also identifies performance bottlenecks of existing solutions. The new algorithm is shown to outperform all alternative approaches when the problem domain targeted by group-MUS enumeration of Horn formulae is axiom pinpointing for the \(\mathcal {EL}\) family of DLs, with a representative suite of examples taken from different medical ontologies.

[1]  Michel Minoux,et al.  LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn Formulae and Computer Implementation , 1988, Inf. Process. Lett..

[2]  Joao Marques-Silva,et al.  Efficient Axiom Pinpointing with EL2MCS , 2015, KI.

[3]  Bijan Parsia,et al.  Repairing Unsatisfiable Concepts in OWL Ontologies , 2006, ESWC.

[4]  Joao Marques-Silva,et al.  MaxSAT-based encodings for Group MaxSAT , 2015, AI Commun..

[5]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[6]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[7]  Enrico Giunchiglia,et al.  Solving Optimization Problems with DLL , 2006, ECAI.

[8]  Rafael Peñaloza,et al.  Error-Tolerant Reasoning in the Description Logic EL , 2014 .

[9]  P. M. Wognum,et al.  Diagnosing and Solving Over-Determined Constraint Satisfaction Problems , 1993, IJCAI.

[10]  Rafael Peñaloza,et al.  Error-Tolerant Reasoning in the Description Logic $\mathcal{E{\kern-.1em}L}$ , 2014, JELIA.

[11]  Franz Baader,et al.  Debugging SNOMED CT Using Axiom Pinpointing in the Description Logic EL+ , 2008, KR-MED.

[12]  Joao Marques-Silva,et al.  Towards Efficient Axiom Pinpointing of EL+ Ontologies , 2015, ArXiv.

[13]  Roberto Sebastiani,et al.  Axiom Pinpointing in Lightweight Description Logics via Horn-SAT Encoding and Conflict Analysis , 2009, CADE.

[14]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[15]  Michele Vescovi,et al.  Exploiting SAT and SMT Techniques for Automated Reasoning and Ontology Manipulation in Description Logics , 2011 .

[16]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[17]  Enrico Giunchiglia,et al.  Combining approaches for solving satisfiability problems with qualitative preferences , 2013, AI Commun..

[18]  Franz Baader,et al.  CEL - A Polynomial-Time Reasoner for Life Science Ontologies , 2006, IJCAR.

[19]  Ulrich Junker,et al.  QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained Problems , 2004, AAAI.

[20]  Barry O'Sullivan,et al.  Representative Explanations for Over-Constrained Problems , 2007, AAAI.

[21]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[22]  Jeff Z. Pan,et al.  Finding Maximally Satisfiable Terminologies for the Description Logic ALC , 2006, AAAI.

[23]  Bijan Parsia,et al.  Finding All Justifications of OWL DL Entailments , 2007, ISWC/ASWC.

[24]  Toby Walsh,et al.  Handbook of satisfiability , 2009 .

[25]  Joao Marques-Silva,et al.  Literal-Based MCS Extraction , 2015, IJCAI.

[26]  Kent A. Spackman,et al.  SNOMED RT: a reference terminology for health care , 1997, AMIA.

[27]  Mark H. Liffiton,et al.  Enumerating Infeasibility: Finding Multiple MUSes Quickly , 2013, CPAIOR.

[28]  Stefan Schlobach,et al.  Non-Standard Reasoning Services for the Debugging of Description Logic Terminologies , 2003, IJCAI.

[29]  Ian Horrocks,et al.  Description Logics , 2008, Handbook of Knowledge Representation.

[30]  Albert Oliveras,et al.  SMT Techniques for Fast Predicate Abstraction , 2006, CAV.

[31]  Frank van Harmelen,et al.  Debugging Incoherent Terminologies , 2007, Journal of Automated Reasoning.

[32]  Bijan Parsia,et al.  Debugging OWL ontologies , 2005, WWW '05.

[33]  Yarden Katz,et al.  Pellet: A practical OWL-DL reasoner , 2007, J. Web Semant..

[34]  Toby Walsh,et al.  Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications , 2009 .

[35]  Brian Logan,et al.  Axiom Pinpointing Using an Assumption-Based Truth Maintenance System , 2012, Description Logics.

[36]  Rafael Pe,et al.  On the Complexity of Axiom Pinpointing in the ELFamily of Description Logics , 2010 .

[37]  Joao Marques-Silva,et al.  Partial MUS Enumeration , 2013, AAAI.

[38]  Rafael Peñaloza,et al.  On the Complexity of Axiom Pinpointing in the EL Family of Description Logics , 2010, KR.

[39]  Rafael Peñaloza,et al.  Pinpointing in the Description Logic EL , 2007, Description Logics.

[40]  John Slaney Set-theoretic duality: A fundamental feature of combinatorial optimisation , 2014, ECAI.

[41]  Norbert Manthey,et al.  Exploiting SAT Technology for Axiom Pinpointing , 2015 .

[42]  N. J.L.deSiqueira,et al.  Explanation-Based Generalisation of Failures , 1988, ECAI.

[43]  Rafael Peñaloza,et al.  Axiom Pinpointing in General Tableaux , 2007, TABLEAUX.

[44]  Alon Itai,et al.  Unification as a Complexity Measure for Logic Programming , 1987, J. Log. Program..

[45]  Joao Marques-Silva,et al.  Fast, flexible MUS enumeration , 2015, Constraints.

[46]  Sherri de Coronado,et al.  NCI Thesaurus: A semantic model integrating cancer-related clinical and molecular information , 2007, J. Biomed. Informatics.

[47]  Ian P. Gent Optimal Implementation of Watched Literals and More General Techniques , 2013, J. Artif. Intell. Res..

[48]  Eliezer L. Lozinskii,et al.  Consistent subsets of inconsistent systems: structure and behaviour , 2003, J. Exp. Theor. Artif. Intell..

[49]  Mikolás Janota,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence On Computing Minimal Correction Subsets , 2022 .

[50]  James Bailey,et al.  Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization , 2005, PADL.

[51]  Franz Baader,et al.  Embedding defaults into terminological knowledge representation formalisms , 1995, Journal of Automated Reasoning.

[52]  Ian Horrocks,et al.  Experience building a Large, Re-usable Medical Ontology using a Description Logic with Transitivity and Concept Inclusions , 1997 .

[53]  Inês Lynce,et al.  Towards efficient MUS extraction , 2012, AI Commun..

[54]  Mikolás Janota,et al.  Minimal Sets over Monotone Predicates in Boolean Formulae , 2013, CAV.

[55]  Michel Ludwig Just: a Tool for Computing Justifications w.r.t. ELH Ontologies , 2014, ORE.

[56]  Éric Grégoire,et al.  An Experimentally Efficient Method for (MSS, CoMSS) Partitioning , 2014, AAAI.

[57]  Thomas Andreas Meyer,et al.  Root Justifications for Ontology Repair , 2011, RR.

[58]  Zohar Manna,et al.  Checking Safety by Inductive Generalization of Counterexamples to Induction , 2007, Formal Methods in Computer Aided Design (FMCAD'07).

[59]  Fahiem Bacchus,et al.  Relaxation Search: A Simple Way of Managing Optional Clauses , 2014, AAAI.

[60]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.