Multi-Objective Weight Optimization for Trajectory Planning of an Airplane with Structural Damage

This paper presents an integrated approach to determine and apply cost criteria weights for the multi-objective optimization (MOO) problem of emergency landing trajectory generation for an aircraft with structural damage. Cost criteria including terrain avoidance, Safety Value Index (SVI), fire cost, hydraulic and fuel costs and safe landing constraints such as touchdown heading and position, airspeed, and glide slope are defined. A potential field strategy is utilized to rapidly generate solutions based on a library of damaged airplane motion primitives including trim states and transition maneuvers between the trim conditions. As is typical, the diverse metrics compete, preventing simultaneous optimization over all objectives. This paper proposes a novel approach to translate the subjective information provided by Pareto analysis into a weighted cost function using an entropy-based weight selection method. The resultant weights reflect the subjective preferences of a decision maker in the total integrated cost metric. Simulation results demonstrate the effectiveness of weight selection based on the proposed method.

[1]  Mazen Farhood,et al.  A Hybrid Architecture for Maneuver-Based Motion Planning and Control of Agile Vehicles , 2011 .

[2]  Emilio Frazzoli,et al.  Real-Time Motion Planning for Agile Autonomous Vehicles , 2000 .

[3]  E. Feron,et al.  Robust hybrid control for autonomous vehicle motion planning , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[4]  M. Góralczyk Just in time - metodą usprawniania zarządzaniem zasobami rzeczowymi w przedsiębiorstwie , 2000 .

[5]  Jianhua Zhang,et al.  Multi-objective Particle Swarm Optimization for Robot Path Planning in Environment with Danger Sources , 2011, J. Comput..

[6]  Duncan A. Campbell,et al.  Fuzzy Multi-Objective Mission Flight Planning in Unmanned Aerial Systems , 2007, 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making.

[7]  R. Bellman Dynamic programming. , 1957, Science.

[8]  Ella M. Atkins,et al.  Trim State Discovery for an Adaptive Flight Planner , 2010 .

[9]  Christian Plaunt,et al.  A Comparison of Risk Sensitive Path Planning Methods for Aircraft Emergency Landing , 2009 .

[10]  Ella M. Atkins,et al.  Emergency Flight Planning for an Energy-Constrained Multicopter , 2017, J. Intell. Robotic Syst..

[11]  Matthew Strube Post-Failure Trajectory Planning From Feasible Trim State Sequences , 2005 .

[12]  Heidar Ali Talebi,et al.  Damaged airplane flight envelope and stability evaluation , 2013 .

[13]  Stan C. A. M. Gielen,et al.  Neural Network Dynamics for Path Planning and Obstacle Avoidance , 1995, Neural Networks.

[14]  Oscar Castillo,et al.  Multiple Objective Genetic Algorithms for Path-planning Optimization in Autonomous Mobile Robots , 2006, Soft Comput..

[15]  José António Tenreiro Machado,et al.  Manipulator trajectory planning using a MOEA , 2007, Appl. Soft Comput..

[16]  Heidar Ali Talebi,et al.  Damaged airplane trajectory planning based on flight envelope and motion primitives , 2014 .

[17]  Ella M. Atkins,et al.  EMERGENCY FLIGHT PLANNING FOR A GENERALIZED TRANSPORT AIRCRAFT WITH LEFT WING DAMAGE , 2007 .

[18]  Nesrin Sarigul-Klijn,et al.  Intelligent Flight Trajectory Generation to Maximize Safe Outcome Probability after a Distress Event , 2010 .

[19]  Ella M. Atkins,et al.  Satellite Formation Design with a Multi-Objective Optimization Technique , 2006 .

[20]  M. J. D. Hayes,et al.  Pareto Optimality and Multiobjective Trajectory Planning for a 7-DOF Redundant Manipulator , 2010, IEEE Transactions on Robotics.

[21]  Yan-tao Tian,et al.  Multi-objective path planning for unrestricted mobile , 2009, 2009 IEEE International Conference on Automation and Logistics.

[22]  Ella M. Atkins DYNAMIC WAYPOINT GENERATION GIVEN REDUCED FLIGHT PERFORMANCE , 2004 .

[23]  José António Tenreiro Machado,et al.  A multi-objective approach for the motion planning of redundant manipulators , 2012, Appl. Soft Comput..

[24]  A. Osyczka An approach to multicriterion optimization problems for engineering design , 1978 .

[25]  Christian Plaunt,et al.  An Emergency Landing Planner for Damaged Aircraft , 2009, IAAI.

[26]  H. Moskowitz,et al.  Fuzzy versus statistical linear regression , 1996 .

[27]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[28]  Wang Haiwei,et al.  Entropy-based Evaluation Method of Design Scheme for Helicopter Transmission , 2013 .

[29]  Yanyang Wang,et al.  Study of Multi-objective Fuzzy Optimization for Path Planning , 2012 .

[30]  Tom Krenzke Ant colony optimization for agile motion planning , 2006 .

[31]  Demin Xu,et al.  Intelligent Online Path Planning for UAVs in Adversarial Environments , 2012 .

[32]  Ella M. Atkins,et al.  Preference-Based Trajectory Generation , 2007, J. Aerosp. Comput. Inf. Commun..

[33]  Jianhua Zhang,et al.  Robot path planning in uncertain environment using multi-objective particle swarm optimization , 2013, Neurocomputing.

[34]  Takeo Kanade,et al.  Efficient Two-phase 3D Motion Planning for Small Fixed-wing UAVs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[35]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[36]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[37]  David W. Coit,et al.  Practical solutions for multi-objective optimization: An application to system reliability design problems , 2007, Reliab. Eng. Syst. Saf..

[38]  Davood Asadi,et al.  Nonlinear adaptive sliding mode tracking control of an airplane with wing damage , 2018 .

[39]  Seid H. Pourtakdoust,et al.  Optimal maneuver-based motion planning over terrain and threats using a dynamic hybrid PSO algorithm , 2013 .

[40]  Ella M. Atkins,et al.  Emergency Flight Planning Applied to Total Loss of Thrust , 2006 .

[41]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[42]  Christian Schlegel,et al.  Communication Patterns as Key towards Component-Based Robotics , 2006 .

[43]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[44]  Abraham Charnes,et al.  Management Models and Industrial Applications of Linear Programming , 1961 .

[45]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored , 2009, Frontiers of Computer Science in China.

[46]  Haibin Duan,et al.  Improved Ant Colony Algorithm for Global Optimal Trajectory Planning of UAV under Complex Environment , 2007, Int. J. Comput. Sci. Appl..

[47]  Chris Aldrich,et al.  The cross-entropy method in multi-objective optimisation: An assessment , 2011, Eur. J. Oper. Res..

[48]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[49]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[50]  H. Ishibuchi,et al.  Multi-objective genetic algorithm and its applications to flowshop scheduling , 1996 .

[51]  Ella M. Atkins Emergency Landing Automation Aids: An Evaluation Inspired by US Airways Flight 1549 , 2010 .