The selectope for bicooperative games

A bicooperative game is defined by a worth function on the set of ordered pairs of disjoint coalitions of players. The aim of this paper is to analyze the selectope for bicooperative games. This solution concept was introduced by Hammer et al. (1977) [20] and studied by Derks et al. (2000) [10] for cooperative games. We show the relations between the selectope, the core and the Weber set and obtain a characterization of almost positive bicooperative games as bicooperative games such that the core, the Weber set and the selectope coincide. Moreover, an axiomatic characterization of the elements of the selectope is obtained.

[1]  Christophe Labreuche,et al.  Bi-capacities - II: the Choquet integral , 2005, Fuzzy Sets Syst..

[2]  Edward M. Bolger,et al.  A consistent value for games with n players and r alternatives , 2000, Int. J. Game Theory.

[3]  Werner Lachmann Methoden in den Wirtschaftswissenschaften , 1995 .

[4]  Gerard van der Laan,et al.  Characterizations of the Random Order Values by Harsanyi Payoff Vectors , 2006, Math. Methods Oper. Res..

[5]  Josep Freixas,et al.  Weighted voting, abstention, and multiple levels of approval , 2003, Soc. Choice Welf..

[6]  John C. Harsanyi,et al.  A Simplified Bargaining Model for the n-Person Cooperative Game , 1963 .

[7]  Edward M. Bolger,et al.  A value for games withn players andr alternatives , 1993 .

[8]  Jean Derks,et al.  A new proof for Weber's characterization of the random order values , 2005, Math. Soc. Sci..

[9]  Robert J. Weber,et al.  Probabilistic Values for Games , 1977 .

[10]  Josep Freixas,et al.  Banzhaf Measures for Games with Several Levels of Approval in the Input and Output , 2005, Ann. Oper. Res..

[11]  L. Shapley,et al.  The Shapley Value , 1994 .

[12]  Roger B. Myerson,et al.  Game theory - Analysis of Conflict , 1991 .

[13]  Dov Monderer,et al.  Weighted values and the core , 1992 .

[14]  Tatsuro Ichiishi,et al.  Super-modularity: Applications to convex games and to the greedy algorithm for LP , 1981 .

[15]  Hans Peters,et al.  The selectope for cooperative games , 2000, Int. J. Game Theory.

[16]  Jesús Mario Bilbao,et al.  The core and the Weber set for bicooperative games , 2007, Int. J. Game Theory.

[17]  L. Shapley Cores of convex games , 1971 .

[18]  Jesús Mario Bilbao,et al.  Biprobabilistic values for bicooperative games , 2008, Discret. Appl. Math..

[19]  Herbert Hamers,et al.  Operations research games: A survey , 2001 .

[20]  E. Kalai,et al.  On weighted Shapley values , 1983 .

[21]  Dan S. Felsenthal,et al.  Ternary voting games , 1997, Int. J. Game Theory.

[22]  Jean Derks A short proof of the inclusion of the core in the Weber set , 1992 .

[23]  Jesús Mario Bilbao,et al.  The Shapley value for bicooperative games , 2008, Ann. Oper. Res..

[24]  Christophe Labreuche,et al.  Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..

[25]  Stef Tijs,et al.  Cores and related solution concepts for multi-choice games , 1995, Math. Methods Oper. Res..

[26]  J. M. Bilbao,et al.  Cooperative Games on Combinatorial Structures , 2000 .

[27]  Y. Crama,et al.  A Characterization of a Cone of Pseudo-Boolean Functions via Supermodularity-Type Inequalities , 1989 .

[28]  Josep Freixas,et al.  The Shapley-Shubik power index for games with several levels of approval in the input and output , 2005, Decis. Support Syst..

[29]  T. E. S. Raghavan,et al.  Shapley Value for Multichoice Cooperative Games, I , 1993 .