Synchronous Membrane Potential Fluctuations in Neurons of the Cat Visual Cortex

[1]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[2]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[3]  K. Tanaka,et al.  Organization of cat visual cortex as investigated by cross-correlation technique. , 1981, Journal of neurophysiology.

[4]  Charles J. Wilson,et al.  Spontaneous firing patterns of identified spiny neurons in the rat neostriatum , 1981, Brain Research.

[5]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[6]  D. Ferster,et al.  An intracellular analysis of geniculo‐cortical connectivity in area 17 of the cat. , 1983, The Journal of physiology.

[7]  D. Whitteridge,et al.  The relationship of receptive field properties to the dendritic shape of neurones in the cat striate cortex. , 1984, The Journal of physiology.

[8]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[9]  D Ferster,et al.  Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of cortico‐geniculate cells. , 1985, The Journal of physiology.

[10]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J. Krüger,et al.  Multimicroelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers. , 1988, Journal of neurophysiology.

[12]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[14]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[15]  H. Tamura,et al.  Horizontal interactions between visual cortical neurones studied by cross‐correlation analysis in the cat. , 1991, The Journal of physiology.

[16]  P König,et al.  Direct physiological evidence for scene segmentation by temporal coding. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[18]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[19]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[20]  P König,et al.  Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[21]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[22]  R. Freeman,et al.  Oscillatory discharge in the visual system: does it have a functional role? , 1992, Journal of neurophysiology.

[23]  I. Lampl,et al.  Subthreshold oscillations of the membrane potential: a functional synchronizing and timing device. , 1993, Journal of neurophysiology.

[24]  A. Reyes,et al.  Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. , 1993, Journal of neurophysiology.

[25]  A. Reyes,et al.  Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons. , 1993, Journal of neurophysiology.

[26]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  I. Ohzawa,et al.  Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex. , 1994, Journal of neurophysiology.

[28]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[29]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[31]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[32]  M. Steriade,et al.  Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. , 1995, Journal of neurophysiology.

[33]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[34]  M. Nicolelis,et al.  Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. , 1995, Science.

[35]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[36]  W. Singer,et al.  Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17. , 1995, Neuroreport.

[37]  A. Aertsen,et al.  Dynamics of neuronal interactions in monkey cortex in relation to behavioural events , 1995, Nature.

[38]  M Steriade,et al.  Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  J. Bullier,et al.  Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. , 1995, Journal of neurophysiology.

[40]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[41]  D Contreras,et al.  State-dependent fluctuations of low-frequency rhythms in corticothalamic networks , 1996, Neuroscience.

[42]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[44]  Y. Frégnac,et al.  Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex , 1996, Journal of Physiology-Paris.

[45]  D Contreras,et al.  Mechanisms of long‐lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. , 1996, The Journal of physiology.

[46]  E. Fetz,et al.  Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. , 1996, Journal of neurophysiology.

[47]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[48]  M. Meister Multineuronal codes in retinal signaling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[50]  A. Aertsen,et al.  Spike synchronization and rate modulation differentially involved in motor cortical function. , 1997, Science.

[51]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[52]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[53]  W T Newsome,et al.  Tuning bandwidths for near-threshold stimuli in area MT. , 1998, Journal of neurophysiology.

[54]  C. Stevens,et al.  Input synchrony and the irregular firing of cortical neurons , 1998, Nature Neuroscience.

[55]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[56]  Charles J. Wilson,et al.  Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo , 1998, Nature.

[57]  A. P. Georgopoulos,et al.  Variability and Correlated Noise in the Discharge of Neurons in Motor and Parietal Areas of the Primate Cortex , 1998, The Journal of Neuroscience.

[58]  D. Plenz,et al.  Up and Down States in Striatal Medium Spiny Neurons Simultaneously Recorded with Spontaneous Activity in Fast-Spiking Interneurons Studied in Cortex–Striatum–Substantia Nigra Organotypic Cultures , 1998, The Journal of Neuroscience.

[59]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[60]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[61]  D. Wilkin,et al.  Neuron , 2001, Brain Research.