Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-the-art performance on three benchmark datasets: Flickr9k, Flickr30k and MS COCO.

[1]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[2]  Ronald A. Rensink The Dynamic Representation of Scenes , 2000 .

[3]  Lex Weaver,et al.  The Optimal Reward Baseline for Gradient-Based Reinforcement Learning , 2001, UAI.

[4]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[5]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[6]  Geoffrey E. Hinton,et al.  Learning to combine foveal glimpses with a third-order Boltzmann machine , 2010, NIPS.

[7]  Yiannis Aloimonos,et al.  Corpus-Guided Sentence Generation of Natural Images , 2011, EMNLP.

[8]  Yejin Choi,et al.  Composing Simple Image Descriptions using Web-scale N-grams , 2011, CoNLL.

[9]  Yejin Choi,et al.  Collective Generation of Natural Image Descriptions , 2012, ACL.

[10]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[11]  Karl Stratos,et al.  Midge: Generating Image Descriptions From Computer Vision Detections , 2012, EACL.

[12]  Misha Denil,et al.  Learning Where to Attend with Deep Architectures for Image Tracking , 2011, Neural Computation.

[13]  Razvan Pascanu,et al.  Theano: new features and speed improvements , 2012, ArXiv.

[14]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[15]  Rolf Dach,et al.  Technical Report 2012 , 2013 .

[16]  Frank Keller,et al.  Image Description using Visual Dependency Representations , 2013, EMNLP.

[17]  Yejin Choi,et al.  Baby talk: Understanding and generating simple image descriptions , 2011, CVPR 2011.

[18]  Alex Graves,et al.  Generating Sequences With Recurrent Neural Networks , 2013, ArXiv.

[19]  Phil Blunsom,et al.  Recurrent Continuous Translation Models , 2013, EMNLP.

[20]  Peter Young,et al.  Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics , 2013, J. Artif. Intell. Res..

[21]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[22]  Nitish Srivastava,et al.  Learning Generative Models with Visual Attention , 2013, NIPS.

[23]  Jasper Snoek,et al.  Input Warping for Bayesian Optimization of Non-Stationary Functions , 2014, ICML.

[24]  Alon Lavie,et al.  Meteor Universal: Language Specific Translation Evaluation for Any Target Language , 2014, WMT@ACL.

[25]  Ruslan Salakhutdinov,et al.  Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models , 2014, ArXiv.

[26]  Pierre Baldi,et al.  The dropout learning algorithm , 2014, Artif. Intell..

[27]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[28]  Peter Young,et al.  From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions , 2014, TACL.

[29]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[30]  Razvan Pascanu,et al.  How to Construct Deep Recurrent Neural Networks , 2013, ICLR.

[31]  Yejin Choi,et al.  TreeTalk: Composition and Compression of Trees for Image Descriptions , 2014, TACL.

[32]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[33]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[34]  Alex Graves,et al.  Recurrent Models of Visual Attention , 2014, NIPS.

[35]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[36]  Wojciech Zaremba,et al.  Recurrent Neural Network Regularization , 2014, ArXiv.

[37]  Xinlei Chen,et al.  Learning a Recurrent Visual Representation for Image Caption Generation , 2014, ArXiv.

[38]  Ruslan Salakhutdinov,et al.  Multimodal Neural Language Models , 2014, ICML.

[39]  Geoffrey Zweig,et al.  From captions to visual concepts and back , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Wei Xu,et al.  Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN) , 2014, ICLR.

[41]  Lisa Anne Hendricks,et al.  Long-term recurrent convolutional networks for visual recognition and description , 2015, CVPR.

[42]  Christopher Joseph Pal,et al.  Describing Videos by Exploiting Temporal Structure , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[43]  Koray Kavukcuoglu,et al.  Visual Attention , 2020, Computational Models for Cognitive Vision.

[44]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[45]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[46]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[49]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[50]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2015, CVPR.

[51]  Trevor Darrell,et al.  Long-term recurrent convolutional networks for visual recognition and description , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[53]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).