Machine Learning Models of Plastic Flow Based on Representation Theory

We use machine learning (ML) to infer stress and plastic flow rules using data from repre- sentative polycrystalline simulations. In particular, we use so-called deep (multilayer) neural networks (NN) to represent the two response functions. The ML process does not choose ap- propriate inputs or outputs, rather it is trained on selected inputs and output. Likewise, its discrimination of features is crucially connected to the chosen input-output map. Hence, we draw upon classical constitutive modeling to select inputs and enforce well-accepted symmetries and other properties. With these developments, we enable rapid model building in real-time with experiments, and guide data collection and feature discovery.

[1]  A. Asgharzadeh,et al.  A Study on Flow Behavior of AA5086 Over a Wide Range of Temperatures , 2016, Journal of Materials Engineering and Performance.

[2]  Sharath Chandra Guntuku,et al.  Support Vector Regression based Flow Stress Prediction in Austenitic Stainless Steel 304 , 2014 .

[3]  G. F. Smith,et al.  Stress-deformation relations for anisotropic solids , 1957 .

[4]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[5]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[6]  S. Kalidindi,et al.  Crystal plasticity finite element simulations using a database of discrete Fourier transforms , 2015 .

[7]  P. Dawson Computational crystal plasticity , 2000 .

[8]  M. Itskov Tensor algebra and tensor analysis for engineers , 2007 .

[9]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[10]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[11]  J. P. Boehler,et al.  Representations for Isotropic and Anisotropic Non-Polynomial Tensor Functions , 1987 .

[12]  J. Zhong,et al.  Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel , 2008 .

[13]  Q. Zheng Theory of Representations for Tensor Functions—A Unified Invariant Approach to Constitutive Equations , 1994 .

[14]  Bob Svendsen,et al.  On the representation of constitutive relations using structure tensors , 1994 .

[15]  Anand Pratap Singh,et al.  New Approaches in Turbulence and Transition Modeling Using Data-driven Techniques , 2015 .

[16]  B. R. Seth GENERALIZED STRAIN MEASURE WITH APPLICATIONS TO PHYSICAL PROBLEMS , 1961 .

[17]  Francesco Rizzi,et al.  Bayesian modeling of inconsistent plastic response due to material variability , 2018, Computer Methods in Applied Mechanics and Engineering.

[18]  Naftali Tishby,et al.  Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.

[19]  Prabhat Hajela,et al.  Neurobiological Computational Models in Structural Analysis and Design , 1990 .

[20]  T. Bieler,et al.  Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications , 2010 .

[21]  Ronald S. Rivlin,et al.  On Identities for 3 × 3 Matrices , 1997 .

[22]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[23]  A.J.M. Spencer,et al.  Finite integrity bases for five or fewer symmetric 3×3 matrices , 1958 .

[24]  Pericles S. Theocaris,et al.  Neural networks for computing in fracture mechanics. Methods and prospects of applications , 1993 .

[25]  J. M. Zhang,et al.  Structural tensors for anisotropic solids , 1990 .

[26]  R. Hill,et al.  CXXVIII. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal , 1951 .

[27]  G. F. Smith On isotropic integrity bases , 1965 .

[28]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[29]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[30]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[31]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[32]  D. Sattinger,et al.  Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics , 1986 .

[33]  Trenton Kirchdoerfer,et al.  Data-driven computational mechanics , 2015, 1510.04232.

[34]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[35]  J. Templeton Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty , 2015 .

[36]  Peter Haupt,et al.  On the application of dual variables in continuum mechanics , 1989 .

[37]  J. Boehler,et al.  Mechanical Behavior of Anisotropic Solids / Comportment Méchanique des Solides Anisotropes , 1982 .

[38]  Hongying Li,et al.  A comparative study on modified Zerilli–Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel , 2012 .

[39]  G. F. Smith,et al.  ORTHOGONAL INTEGRITY BASIS FOR N SYMMETRIC MATRICES , 1969 .

[40]  Michele Milano,et al.  Neural network modeling for near wall turbulent flow , 2002 .

[41]  A. Spencer,et al.  The Formulation of Constitutive Equation for Anisotropic Solids , 1982 .

[42]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[43]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[44]  Brendan D. Tracey,et al.  A Machine Learning Strategy to Assist Turbulence Model Development , 2015 .

[45]  Ruey Long Cheu,et al.  Automated detection of lane-blocking freeway incidents using artificial neural networks , 1995 .

[46]  Charu C. Aggarwal,et al.  Neural Networks and Deep Learning , 2018, Springer International Publishing.

[47]  G. F. Smith,et al.  Integrity bases for vectors — The crystal classes , 1964 .

[48]  Ronald S. Rivlin,et al.  Further Remarks on the Stress-Deformation Relations for Isotropic Materials , 1955 .

[49]  R. Hill,et al.  On constitutive inequalities for simple materials—I , 1968 .

[50]  Hojjat Adeli,et al.  Neural Networks in Civil Engineering: 1989–2000 , 2001 .

[51]  William J. Norton Part III , 1916, Transactions of the American Institute of Electrical Engineers.

[52]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[53]  J. Mandel Generalisation de la theorie de plasticite de W. T. Koiter , 1965 .

[54]  Wei Chen,et al.  A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality , 2017 .

[55]  Peter Haupt,et al.  Stress tensors associated with deformation tensors via duality , 1996 .

[56]  C. C. Wang,et al.  On a general representation theorem for constitutive relations , 1969 .

[57]  A. Wineman,et al.  Material symmetry restrictions on non-polynomial constitutive equations , 1963 .

[58]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[59]  G. Johnson,et al.  A discussion of stress rates in finite deformation problems , 1984 .

[60]  V. Lubarda Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics , 2004 .

[61]  Genki Yagawa,et al.  Implicit constitutive modelling for viscoplasticity using neural networks , 1998 .

[62]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[63]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[64]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[65]  Gábor Csányi,et al.  Gaussian approximation potentials: A brief tutorial introduction , 2015, 1502.01366.

[66]  Ravindranadh Bobbili,et al.  Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures , 2015 .

[67]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[68]  Hojjat Adeli,et al.  Perceptron Learning in Engineering Design , 2008 .

[69]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[70]  Frank Diederich,et al.  The Non Linear Field Theories Of Mechanics , 2016 .

[71]  A.J.M. Spencer,et al.  Isotropic Polynomial Invariants and Tensor Functions , 1987 .

[72]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  László Szabó,et al.  Comparison of some stress rates , 1989 .

[74]  Orion L. Kafka,et al.  Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support , 2016 .

[75]  C. C. Wang,et al.  A new representation theorem for isotropic functions: An answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions , 1970 .

[76]  A. Wineman,et al.  Material symmetry restrictions on constitutive equations , 1964 .

[77]  Julia Ling,et al.  Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework , 2017, Physical Review Fluids.

[78]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[79]  A.J.M. Spencer,et al.  The theory of matrix polynomials and its application to the mechanics of isotropic continua , 1958 .

[80]  Alberto Tonda,et al.  Data driven modeling of plastic deformation , 2017 .

[81]  R. Rivlin,et al.  Stress-Deformation Relations for Isotropic Materials , 1955 .

[82]  Maher Salloum,et al.  INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 2: GENERALIZED CONTINUUM MODELS BASED ON GAUSSIAN PROCESSES , 2014 .

[83]  G. F. Smith,et al.  The anisotropic tensors , 1957 .

[84]  Jamshid Ghaboussi,et al.  Autoprogressive training of neural network constitutive models , 1998 .

[85]  Julia Ling,et al.  Machine learning strategies for systems with invariance properties , 2016, J. Comput. Phys..

[86]  A. Spencer,et al.  Isotropic integrity bases for vectors and second-order tensors , 1962 .

[87]  M C Shaughnessy,et al.  Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics. , 2016, Journal of chemical theory and computation.