Multivariate Statistical Analysis of Functional Neuroimaging Data

Multivariate Statistical Analysis of Functional Neuroimaging Data by Takeshi Yokoo Adviser: Lawrence Sirovich This dissertation is intended to provide a comprehensive theoretical review and some new developments in the multivariate statistical analysis of functional neuroimaging data. As a stereotypical example of functional imaging techniques, we consider intrinsic optical imaging of the central visual system of mammals, where the spatial pattern of the cortical reflectance is imaged in response to various visual stimulations. We appeal to a general analysis strategy called “pseudo-univariate reduction”, with which the multivariate data distribution is marginalized to a univariate distribution through projection onto some vector. For each choice of projection vector, the resulting one-dimensional distribution can be characterized by some statistic, such as the mean, variance, etc. For a given statistic, one can attempt to optimize its value as a function of the projection vector, and compute an unique set of projection vectors whose univariate distributions have “best” statistical characteristics. We give three particular examples of such a procedure, namely, principal component analysis, canonical variate analysis, and generalized indicator function analysis. First two methods are considered standard in multivariate statistics, and they have been successfully applied to the analysis of functional imaging data. The third method is our original contribution, which we present in the framework of the classical theory of multivariate analysis. We discuss some theoretical and practical advantages of our new method over the existing ones, and demonstrate its efficacy in the analysis of actual functional imaging data of mammalian primary visual cortex.

[1]  H. Hotelling Multivariate Quality Control-illustrated by the air testing of sample bombsights , 1947 .

[2]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  M. Bartlett A note on tests of significance in multivariate analysis , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  J. Seward,et al.  Evolving era of multidimensional medical imaging. , 1999, Mayo Clinic proceedings.

[5]  W von Seelen,et al.  Optical imaging of rat somatosensory cortex reveals representational overlap as topographic principle , 1995, Neuroreport.

[6]  R. Fisher THE SAMPLING DISTRIBUTION OF SOME STATISTICS OBTAINED FROM NON‐LINEAR EQUATIONS , 1939 .

[7]  A. Grinvald,et al.  Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception , 2005, Brain Topography.

[8]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[9]  Rupert G. Miller Simultaneous Statistical Inference , 1966 .

[10]  Rupert G. Miller,et al.  Developments in Multiple Comparisons 1966–1976 , 1977 .

[11]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[12]  R. D. Bock,et al.  Multivariate Statistical Methods in Behavioral Research , 1978 .

[13]  D. Lawley A GENERALIZATION OF FISHER'S z TEST , 1938 .

[14]  J C Mazziotta,et al.  Imaging: window on the brain. , 2000, Archives of neurology.

[15]  Lars Kai Hansen,et al.  Consensus Inference in Neuroimaging , 2001, NeuroImage.

[16]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[17]  K. Pillai,et al.  On the distribution of the largest of six roots of a matrix in multivariate analysis , 1959 .

[18]  C. R. Rao,et al.  An asymptotic expansion of the distribution of Wilk's criterion , 1951 .

[19]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  K J Worsley,et al.  An overview and some new developments in the statistical analysis of PET and fMRI data , 1997, Human brain mapping.

[21]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[22]  B W Knight,et al.  Representation of spatial frequency and orientation in the visual cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[24]  K. Pillai,et al.  Upper percentage points of the largest root of a matrix in multivariate analysis. , 1967, Biometrika.

[25]  N. L. Johnson,et al.  Noncentral and central chi-square, f and beta distribution functions as special cases of the distribution function of an indefinite quadratic form , 1993 .

[26]  D. N. Nanda Distribution of the Sum of Roots of a Determinantal Equation under a Certain Condition , 1950 .

[27]  C. Harley,et al.  Optical imaging of odor preference memory in the rat olfactory bulb. , 2002, Journal of neurophysiology.

[28]  Jean-Baptiste Poline,et al.  Multivariate Model Specification for fMRI Data , 2002, NeuroImage.

[29]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[30]  S. S. Wilks CERTAIN GENERALIZATIONS IN THE ANALYSIS OF VARIANCE , 1932 .

[31]  A. Sornborger,et al.  Spatiotemporal analysis of optical imaging data , 2003, NeuroImage.

[32]  Karl J. Friston,et al.  Comparing Functional (PET) Images: The Assessment of Significant Change , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  M. Tanifuji,et al.  Horizontal Propagation of Excitation in Rat Visual Cortical Slices Revealed by Optical Imaging , 1994 .

[34]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[35]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[36]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[37]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[38]  R. Turner,et al.  Characterizing Dynamic Brain Responses with fMRI: A Multivariate Approach , 1995, NeuroImage.

[39]  Lawrence Sirovich,et al.  Separating spatially distributed response to stimulation from background. I. Optical imaging , 1997, Biological Cybernetics.

[40]  E. Kaplan,et al.  A Principal Components-Based Method for the Detection of Neuronal Activity Maps: Application to Optical Imaging , 2000, NeuroImage.

[41]  S. N. Roy On a Heuristic Method of Test Construction and its use in Multivariate Analysis , 1953 .

[42]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[43]  C. Jacobi,et al.  C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .

[44]  Daniel Goldreich,et al.  A new approach to optical imaging applied to rat barrel cortex , 1994, Journal of Neuroscience Methods.

[45]  David R Moore,et al.  Optical imaging of intrinsic signals in ferret auditory cortex: responses to narrowband sound stimuli. , 2002, Journal of neurophysiology.

[46]  G. Blasdel,et al.  Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[48]  J. Shaffer Multiple Hypothesis Testing , 1995 .

[49]  D. L. Heck,et al.  Charts of Some Upper Percentage Points of the Distribution of the Largest Characteristic Root , 1960 .

[50]  Lawrence Sirovich,et al.  Management and Analysis of Large Scientific Datasets , 1992 .

[51]  H. Vinod Canonical ridge and econometrics of joint production , 1976 .

[52]  Stephen C. Strother,et al.  Penalized Discriminant Analysis of [15O]-water PET Brain Images with Prediction Error Selection of Smoothness and Regularization , 2001, IEEE Trans. Medical Imaging.

[53]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  L. Sirovich,et al.  An Optimization Approach to Signal Extraction from Noisy Multivariate Data , 2001, NeuroImage.

[55]  H. Hotelling The Generalization of Student’s Ratio , 1931 .

[56]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[57]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[58]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[59]  K. Pillai,et al.  On the distribution of the largest characteristic root of a matrix in multivariate analysis , 1965 .

[60]  Stephen C. Strother,et al.  An evaluation of methods for detecting brain activations from functional neuroimages , 2002, Artif. Intell. Medicine.

[61]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[62]  N. H. Timm Applied Multivariate Analysis , 2002 .

[63]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[64]  H. Hotelling,et al.  Multivariate Quality Control , 1947 .

[65]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[66]  D. F. Morrison,et al.  Multivariate Statistical Methods , 1968 .

[67]  David J Lomas,et al.  100 years and running: the medical imaging revolution , 1995, The Lancet.

[68]  Lawrence Sirovich,et al.  Analysis Methods for Optical Imaging , 2001 .

[69]  K. Pillai Some New Test Criteria in Multivariate Analysis , 1955 .

[70]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[71]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1989 .

[72]  Michel Loève,et al.  Probability Theory I , 1977 .

[73]  S. Kullback,et al.  Some Aspects of Multivariate Analysis. , 1958 .

[74]  B J McNeil,et al.  Advances in biomedical imaging. , 2001, JAMA.

[75]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[76]  Y Yarom,et al.  Unravelling cerebellar circuitry: an optical imaging study. , 2000, Progress in brain research.

[77]  A. J. Collins,et al.  Introduction to Multivariate Analysis , 1982 .

[78]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .

[79]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[80]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[81]  James P. Braselton,et al.  Multiple Comparison Methods for Means , 2002, SIAM Rev..