Singular tuples of matrices is not a null cone (and the symmetries of algebraic varieties)

The following multi-determinantal algebraic variety plays a central role in algebra, algebraic geometry and computational complexity theory: ${\rm SING}_{n,m}$, consisting of all $m$-tuples of $n\times n$ complex matrices which span only singular matrices. In particular, an efficient deterministic algorithm testing membership in ${\rm SING}_{n,m}$ will imply super-polynomial circuit lower bounds, a holy grail of the theory of computation. A sequence of recent works suggests such efficient algorithms for memberships in a general class of algebraic varieties, namely the null cones of linear group actions. Can this be used for the problem above? Our main result is negative: ${\rm SING}_{n,m}$ is not the null cone of any (reductive) group action! This stands in stark contrast to a non-commutative analog of this variety, and points to an inherent structural difficulty of ${\rm SING}_{n,m}$. To prove this result we identify precisely the group of symmetries of ${\rm SING}_{n,m}$. We find this characterization, and the tools we introduce to prove it, of independent interest. Our work significantly generalizes a result of Frobenius for the special case $m=1$, and suggests a general method for determining the symmetries of algebraic varieties.

[1]  Harm Derksen,et al.  Degree bounds for semi-invariant rings of quivers , 2016, Journal of Pure and Applied Algebra.

[2]  Michel Van den Bergh,et al.  Semi-invariants of quivers for arbitrary dimension vectors , 1999 .

[3]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, International Symposium on Fundamentals of Computation Theory.

[4]  Youming Qiao,et al.  Constructive non-commutative rank computation is in deterministic polynomial time , 2015, computational complexity.

[5]  J. Dieudonné,et al.  Sur une généralisation du groupe orthogonal à quatre variables , 1948 .

[6]  Christophe Reutenauer,et al.  Inversion height in free fields , 1996 .

[7]  Orit E. Raz,et al.  Subspace arrangements, graph rigidity and derandomization through submodular optimization , 2019, Bolyai Society Mathematical Studies.

[8]  Amir Shpilka,et al.  Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing , 2013, APPROX-RANDOM.

[9]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[10]  M. Panella Associate Editor of the Journal of Computer and System Sciences , 2014 .

[11]  Harm Derksen,et al.  Polynomial degree bounds for matrix semi-invariants , 2015, ArXiv.

[12]  Peter Bürgisser,et al.  Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory , 2017, ITCS.

[13]  Mátyás Domokos,et al.  Semi-invariants of quivers as determinants , 2001 .

[14]  J. Weyman Cohomology of Vector Bundles and Syzygies , 2003 .

[15]  E. B. Dynkin,et al.  The maximal subgroups of the classical groups , 1960 .

[16]  D. Happel Relative invariants and subgeneric orbits of quivers of finite and tame type , 1982 .

[17]  Avi Wigderson,et al.  Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing , 2018, STOC.

[18]  R. Meshulam On k-spaces of real matrices , 1990 .

[19]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[20]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[21]  Ketan Mulmuley,et al.  Geometric Complexity Theory V: Efficient algorithms for Noether Normalization , 2012 .

[22]  Roy Meshulam,et al.  Spaces of Singular Matrices and Matroid Parity , 2002, Eur. J. Comb..

[23]  P. Newstead Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .

[24]  Harm Derksen,et al.  Algorithms for orbit closure separation for invariants and semi-invariants of matrices , 2018, ArXiv.

[25]  Joe W. Harris,et al.  Vector spaces of matrices of low rank , 1988 .

[26]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[27]  Harm Derksen,et al.  Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients , 2000 .

[28]  J. M. Landsberg,et al.  Geometry and Complexity Theory , 2017 .

[29]  B. M. Fulk MATH , 1992 .

[30]  Robert M. Guralnick,et al.  Invertible preservers and algebraic groups , 1994 .

[31]  Cole Franks Operator scaling with specified marginals , 2018, STOC.

[32]  J. Urry Complexity , 2006, Interpreting Art.

[33]  Youming Qiao,et al.  Non-commutative Edmonds’ problem and matrix semi-invariants , 2015, computational complexity.

[34]  Visu Makam Hilbert series and degree bounds for matrix (semi-)invariants , 2015 .

[35]  Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing , 2018, STOC.

[36]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[37]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[38]  유재철,et al.  Randomization , 2020, Randomization, Bootstrap and Monte Carlo Methods in Biology.

[39]  James S. Milne,et al.  Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field , 2017 .

[40]  Harm Derksen,et al.  On non-commutative rank and tensor rank , 2016, 1606.06701.

[41]  R. Meshulam ON THE MAXIMAL RANK IN A SUBSPACE OF MATRICES , 1985 .

[42]  Harm Derksen,et al.  Generating invariant rings of quivers in arbitrary characteristic , 2016, 1610.06617.

[43]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[44]  Chi-Kwong Li,et al.  Overgroups of some classical linear groups with applications to linear preserver problems , 1994 .

[45]  Avi Wigderson,et al.  Efficient Algorithms for Tensor Scaling, Quantum Marginals, and Moment Polytopes , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[46]  R. Tennant Algebra , 1941, Nature.

[47]  D. Happel Relative invariants of quivers of tame type , 1984 .

[48]  Avi Wigderson,et al.  Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling , 2018 .

[49]  J. A. Rodríguez,et al.  Linear and Multilinear Algebra , 2007 .

[50]  S. A. Amitsur Rational identities and applications to algebra and geometry , 1966 .

[51]  Ketan Mulmuley,et al.  Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..

[52]  Avi Wigderson,et al.  A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[53]  Christophe Reutenauer,et al.  COMMUTATIVE/NONCOMMUTATIVE RANK OF LINEAR MATRICES AND SUBSPACES OF MATRICES OF LOW RANK , 2004 .

[54]  Chi-Kwong Li,et al.  Linear Preserver Problems , 2001, Am. Math. Mon..