Computer Vision and Image Understanding

With millions of users and billions of photos, web-scale face recognition is a challenging task that demands speed, accuracy, and scalability. Most current approaches do not address and do not scale well to Internet-sized scenarios such as tagging friends or finding celebrities. Focusing on web-scale face identification, we gather an 800,000 face dataset from the Facebook social network that models real-world situations where specific faces must be recognized and unknown identities rejected. We propose a novel Linearly Approximated Sparse Representation-based Classification (LASRC) algorithm that uses linear regression to perform sample selection for @?^1-minimization, thus harnessing the speed of least-squares and the robustness of sparse solutions such as SRC. Our efficient LASRC algorithm achieves comparable performance to SRC with a 100-250 times speedup and exhibits similar recall to SVMs with much faster training. Extensive tests demonstrate our proposed approach is competitive on pair-matching verification tasks and outperforms current state-of-the-art algorithms on open-universe identification in uncontrolled, web-scale scenarios.

[1]  Alice J. O'Toole,et al.  Face Recognition Algorithms Surpass Humans Matching Faces Over Changes in Illumination , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Ming-Hsuan Yang,et al.  Fast sparse representation with prototypes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[4]  Harry Wechsler,et al.  Open set face recognition using transduction , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[8]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  Bruce A. Draper,et al.  An introduction to the good, the bad, & the ugly face recognition challenge problem , 2011, Face and Gesture 2011.

[10]  Frédéric Jurie,et al.  Face Recognition using Local Quantized Patterns , 2012, BMVC.

[11]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  P. Harwood Michael , 1985 .

[13]  Shie Mannor,et al.  Sparse Algorithms Are Not Stable: A No-Free-Lunch Theorem , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[15]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[16]  Jian Yang,et al.  K Nearest Neighbor Based Local Sparse Representation Classifier , 2010, 2010 Chinese Conference on Pattern Recognition (CCPR).

[17]  Allen Y. Yang,et al.  Fast ℓ1-minimization algorithms and an application in robust face recognition: A review , 2010, 2010 IEEE International Conference on Image Processing.

[18]  PietikainenMatti,et al.  Face Description with Local Binary Patterns , 2006 .

[19]  Stephen P. Boyd,et al.  An Efficient Method for Compressed Sensing , 2007, 2007 IEEE International Conference on Image Processing.

[20]  Rainer Stiefelhagen,et al.  Open-Set Face Recognition-Based Visitor Interface System , 2009, ICVS.

[21]  Anders P. Eriksson,et al.  Is face recognition really a Compressive Sensing problem? , 2011, CVPR 2011.

[22]  Mohammed Bennamoun,et al.  Linear Regression for Face Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Jian Sun,et al.  An associate-predict model for face recognition , 2011, CVPR 2011.

[24]  Takeo Kanade,et al.  Multi-PIE , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[25]  Erik G. Learned-Miller,et al.  Unsupervised Joint Alignment of Complex Images , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[26]  P. Jonathon Phillips,et al.  Models of large population recognition performance , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[27]  G OrtizEnrique,et al.  Face recognition for web-scale datasets , 2014 .

[28]  Christian Küblbeck,et al.  Face detection and tracking in video sequences using the modifiedcensus transformation , 2006, Image Vis. Comput..

[29]  A. Martínez,et al.  The AR face databasae , 1998 .

[30]  Jean-Philippe Thiran,et al.  The BANCA Database and Evaluation Protocol , 2003, AVBPA.

[31]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[32]  Hao Xu,et al.  Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries , 2011, NIPS.

[33]  Honggang Zhang,et al.  Local Sparse Representation Based Classification , 2010, 2010 20th International Conference on Pattern Recognition.

[34]  David Cox,et al.  Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook , 2011, CVPR 2011 WORKSHOPS.

[35]  Nicolas Pinto,et al.  How far can you get with a modern face recognition test set using only simple features? , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[37]  George W. Quinn,et al.  Report on the Evaluation of 2D Still-Image Face Recognition Algorithms , 2011 .

[38]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[39]  Gaurav Sharma,et al.  Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis , 2012, ECCV.

[40]  Lei Zhang,et al.  Sparse representation or collaborative representation: Which helps face recognition? , 2011, 2011 International Conference on Computer Vision.

[41]  Ming Yang,et al.  Large-scale image classification: Fast feature extraction and SVM training , 2011, CVPR 2011.

[42]  Rainer Stiefelhagen,et al.  Robust Open-Set Face Recognition for Small-Scale Convenience Applications , 2010, DAGM-Symposium.

[43]  Chunhua Shen,et al.  Rapid face recognition using hashing , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Dmitry M. Malioutov,et al.  Homotopy continuation for sparse signal representation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[45]  Bill Triggs,et al.  Visual Recognition Using Local Quantized Patterns , 2012, ECCV.

[46]  Shree K. Nayar,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Describable Visual Attributes for Face Verification and Image Search , 2022 .

[47]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[48]  Hossein Mobahi,et al.  Toward a Practical Face Recognition System: Robust Alignment and Illumination by Sparse Representation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[50]  Trevor Darrell,et al.  Autotagging Facebook: Social network context improves photo annotation , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[51]  Tal Hassner,et al.  Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Laurent El Ghaoui,et al.  Safe Feature Elimination in Sparse Supervised Learning , 2010, ArXiv.

[54]  Jonghyun Choi,et al.  Face verification using sparse representations , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[55]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[56]  David J. Kriegman,et al.  From few to many: generative models for recognition under variable pose and illumination , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[57]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[58]  Enrique G. Ortiz,et al.  Evaluation of face recognition techniques for application to facebook , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[60]  Anderson Rocha,et al.  Toward Open Set Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[62]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[63]  Bruce A. Draper,et al.  Preliminary studies on the Good, the Bad, and the Ugly face recognition challenge problem , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[64]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[65]  Andrew Zisserman,et al.  Hello! My name is... Buffy'' -- Automatic Naming of Characters in TV Video , 2006, BMVC.

[66]  Frank K. Soong,et al.  A Sparse and Low-rank approach to efficient face alignment for photo-real talking head synthesis , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[67]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[68]  Javier Ruiz-del-Solar,et al.  Recognition of Faces in Unconstrained Environments: A Comparative Study , 2009, EURASIP J. Adv. Signal Process..

[69]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[70]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[71]  Chi-Ho Chan,et al.  Sparse representation of (Multiscale) histograms for face recognition robust to registration and illumination problems , 2010, 2010 IEEE International Conference on Image Processing.

[72]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[73]  Peyman Milanfar,et al.  Face Verification Using the LARK Representation , 2011, IEEE Transactions on Information Forensics and Security.

[74]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  Bruce A. Draper,et al.  The CSU Face Identification Evaluation System , 2005, Machine Vision and Applications.

[76]  Lei Zhang,et al.  Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary , 2010, ECCV.

[77]  Subhransu Maji,et al.  Fast and Accurate Digit Classification , 2009 .

[78]  Erica Klarreich,et al.  Hello, my name is… , 2014, CACM.

[79]  Rama Chellappa,et al.  Dictionary-Based Face Recognition Under Variable Lighting and Pose , 2012, IEEE Transactions on Information Forensics and Security.

[80]  Shuicheng Yan,et al.  Visual classification with multi-task joint sparse representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[81]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[82]  Luc Vandendorpe,et al.  Face Verification Competition on the XM2VTS Database , 2003, AVBPA.