PPAD-completeness of polyhedral versions of Sperner's Lemma
暂无分享,去创建一个
[1] Júlia Pap,et al. Integrality, complexity and colourings in polyhedral combinatorics , 2012 .
[2] Paul W. Goldberg,et al. The complexity of computing a Nash equilibrium , 2006, STOC '06.
[3] Shiva Kintali. Scarf is Ppad-Complete , 2008, ArXiv.
[4] Tamás Király,et al. Kernels, Stable Matchings, and Scarf's Lemma (Combinatorial Optimization and Discrete Algorithms) , 2010 .
[5] Xiaotie Deng,et al. Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[6] N. Megiddo,et al. On the ε-perturbation method for avoiding degeneracy , 1989 .
[7] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[8] T. Gallai,et al. Maximum-Minimum Sätze über Graphen , 1958 .
[9] Rajmohan Rajaraman,et al. Reducibility among Fractional Stability Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[10] Tamás Király,et al. Kernels, Stable Matchings, and Scarf's Lemma , 2010 .
[11] Xi Chen,et al. On the complexity of 2D discrete fixed point problem , 2006, Theor. Comput. Sci..
[12] ChenXi,et al. Settling the complexity of computing two-player Nash equilibria , 2009 .
[13] Tamás Király,et al. A note on kernels and Sperner's Lemma , 2009, Discret. Appl. Math..
[14] H. Scarf. The Core of an N Person Game , 1967 .
[15] Xiaotie Deng,et al. Settling the complexity of computing two-player Nash equilibria , 2007, JACM.