Dual Systolic Architectures for VLSI Digital Signal Processing Systems

This correspondence presents a linear systolic array for the implementation pf digital signal processing systems based upon matrix- vector multiplication algorithms where the matrix elements can be computed from their row and column indexes. Haar, Walsh, and the discrete Fourier transforms are solved using this approach. The method presented enables the n2 matrix elements to be computed in situ directly from the 2n matrix indexes. Thus, performance comparable to known systolic matrix-vector multipliers is achieved using only constant I/O bandwidth, rather than O(n) bandwidth required in the more general case. A generalized method is given for the development of recursively formed matrices and specifically the VLSI implementation of the Haar and Walsh transforms.

[1]  Nasir Ahmed,et al.  On Notation and Definition of Terms Related to a Class of Complete Orthogonal Functions , 1973 .

[2]  Franco P. Preparata,et al.  An Architecture for Bitonic Sorting with Optimal VLSI Performnance , 1984, IEEE Transactions on Computers.

[3]  Harry C. Andrews B70-2 Transmission of Information by Orthogonal Functions , 1970, IEEE Transactions on Computers.

[4]  Harry C. Andrews,et al.  A Generalized Technique for Spectral Analysis , 1970, IEEE Transactions on Computers.

[5]  Svetlana P. Kartashev,et al.  Reconfigurable multicomputer networks for very fast real-time applications , 1899, AFIPS '82.

[6]  T. Natarajan,et al.  Cooley-Tukey-type algorithm for the Haar transform , 1973 .

[7]  C. Thomborson,et al.  Area-time complexity for VLSI , 1979, STOC.

[8]  Hungwen Li,et al.  Structured Process: A New Language Attribute for Better Interaction of Parallel Architecture and Algorithm , 1985, ICPP.

[9]  Franco P. Preparata,et al.  The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[10]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  H. E. Chrestenson A class of generalized Walsh functions , 1955 .

[12]  Amos Fiat,et al.  Polymorphic Arrays: An Architecture for a Programmable Systolic Machine , 1985, ICPP.

[13]  Harold S. Stone,et al.  Parallel Processing with the Perfect Shuffle , 1971, IEEE Transactions on Computers.

[14]  H. T. Kung Why systolic architectures? , 1982, Computer.

[15]  H. T. Kung Systolic algorithms for the CMU warp processor , 1984 .

[16]  D. Michael Miller,et al.  Spectral Fault Signatures for Single Stuck-At Faults in Combinational Networks , 1984, IEEE Transactions on Computers.

[17]  Tse-Yun Feng,et al.  On a Class of Multistage Interconnection Networks , 1980, IEEE Transactions on Computers.

[18]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[19]  Stanley L. Hurst The logical processing of digital signals , 1978 .

[20]  K. R. Rao,et al.  Orthogonal Transforms for Digital Signal Processing , 1979, IEEE Transactions on Systems, Man, and Cybernetics.