Robust control approach for input–output linearizable nonlinear systems using high‐gain disturbance observer

SUMMARY This paper addresses a robust control approach for a class of input–output linearizable nonlinear systems with uncertainties and modeling errors considered as unknown inputs. As known, the exact feedback linearization method can be applied to control input–output linearizable nonlinear systems, if all the states are available and modeling errors are negligible. The mentioned two prerequisites denote important problems in the field of classical nonlinear control. The solution approach developed in this contribution is using disturbance rejection by applying feedback of the uncertainties and modeling errors estimated by a specific high-gain disturbance observer as unknown inputs. At the same time, the nonmeasured states can be calculated from the estimation of the transformed system states. The feasibility and conditions for the application of the approach on mechanical systems are discussed. A nonlinear multi-input multi-output mechanical system is taken as a simulation example to illustrate the application. The results show the robustness of the control design and plausible estimations of full-rank disturbances.Copyright © 2012 John Wiley & Sons, Ltd.

[1]  P. Müller,et al.  State estimation of dynamical systems with nonlinearities by using proportional-integral observer , 1995 .

[2]  Chang-Woo Park,et al.  Robust Stable Fuzzy Control via Fuzzy Modeling and Feedback Linearization with Its Applications to Controlling Uncertain Single-link Flexible Joint Manipulators , 2004, J. Intell. Robotic Syst..

[3]  J. Lückel,et al.  Zur Theorie der Störgrößenaufschaltung in linearen Mehrgrößenregelsystemen / Disturbance rejection control in linear multivariable systems , 1977 .

[4]  Jeang-Lin Chang,et al.  Robust discrete‐time output feedback model reference control design with state and unknown input estimation , 2009 .

[5]  Bor-Sen Chen,et al.  Robustness design of nonlinear dynamic systems via fuzzy linear control , 1999, IEEE Trans. Fuzzy Syst..

[6]  Kunsoo Huh,et al.  Robust proportional-integral Kalman filter design using a convex optimization method , 2008 .

[7]  Idriz Krajcin Einsatz des PI-Beobachters zur modellbasierten Diagnose und Regelung elastischer mechanischer Strukturen , 2006 .

[8]  A. Isidori Nonlinear Control Systems , 1985 .

[9]  Henri Bourlès,et al.  Robust nonlinear control associating robust feedback linearization and H∞ control , 2006, IEEE Trans. Autom. Control..

[10]  M. Saif,et al.  A novel approach to the design of unknown input observers , 1991 .

[11]  Dirk Söffker,et al.  New Results of the Development and Application of Robust Observers , 2005 .

[12]  Veit Hagenmeyer,et al.  Continuous-time non-linear flatness-based predictive control: an exact feedforward linearisation setting with an induction drive example , 2008, Int. J. Control.

[13]  Denis V. Efimov,et al.  Robust and Adaptive Observer-Based Partial Stabilization for a Class of Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[14]  B. Shafai,et al.  Robust control system design with a proportional integral observer , 1989 .

[15]  Veit Hagenmeyer,et al.  Robustness analysis of exact feedforward linearization based on differential flatness , 2003, Autom..

[16]  Boubaker Daachi,et al.  ROBUST FEEDBACK LINEARIZATION AND GH∞ CONTROLLER FOR A QUADROTOR UNMANNED AERIAL VEHICLE , 2005 .

[17]  Dirk Söffker,et al.  A Robust Control Design Approach Combining Exact Linearization and High-Gain PI-Observer , 2007 .

[18]  S. Bhattacharyya Observer design for linear systems with unknown inputs , 1978 .

[19]  Laura Menini,et al.  Further results on decoupling with stability for Hamiltonian systems , 1999 .

[20]  Riccardo Marino,et al.  Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems, , 1993, Autom..

[21]  Changchun Hua,et al.  Synchronization of chaotic systems based on PI observer design , 2005 .

[22]  V. Hagenmeyer,et al.  Exact feedforward linearization based on differential flatness , 2003 .

[23]  Guo-Ping Liu,et al.  Eigenstructure assignment design for proportional-integral observers: continuous-time case , 2001 .

[24]  R. Carroll,et al.  Design of proportional-integral observer for linear time-varying multivariable systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[25]  Ming-Yang Cheng,et al.  A partial pole placement approach to proportional-integral observer design , 2009 .

[26]  Marios M. Polycarpou,et al.  A Robust Adaptive Nonlinear Control Design , 1993, 1993 American Control Conference.

[27]  J. Stoustrup,et al.  LTR design of discrete-time proportional-integral observers , 1996, IEEE Trans. Autom. Control..

[28]  P. Olver Nonlinear Systems , 2013 .

[29]  Jeang-Lin Chang Robust Discrete-Time Model Reference Sliding-Mode Controller Design With State and Disturbance Estimation , 2008, IEEE Transactions on Industrial Electronics.