High-Throughput Computational Assessment of Previously Synthesized Semiconductors for Photovoltaic and Photoelectrochemical Devices

Using computational screening we identify materials with potential use as light absorbers in photovoltaic or photoelectrochemical devices. The screening focuses on compounds of up to three different chemical elements which are abundant and nontoxic. A prescreening is carried out based on information from the Inorganic Crystal Structure Database and Open Quantum Materials Database. The light absorption, carrier mobility, defect tolerance, and stability of the materials are assessed by a set of simple computational descriptors. The identified 74 materials include a variety of pnictogenides, chalcogenides, and halides. Several recently investigated light absorbers, such as CsSnI3, CsSnBr3, and BaZrS3, appear on the list.

[1]  H. Zeng,et al.  From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient , 2017 .

[2]  Vladan Stevanovic,et al.  A Computational Framework for Automation of Point Defect Calculations , 2016, 1611.00825.

[3]  Anubhav Jain,et al.  New Light‐Harvesting Materials Using Accurate and Efficient Bandgap Calculations , 2015 .

[4]  First-principles study of superconductivity in the hole self-doped LiB1.1C0.9 , 2013 .

[5]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[6]  K. Jacobsen,et al.  Band Gap Tuning and Defect Tolerance of Atomically Thin Two-Dimensional Organic-Inorganic Halide Perovskites. , 2016, The journal of physical chemistry letters.

[7]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[8]  J. Cuomo,et al.  Higher nitrides of hafnium, zirconium, and titanium synthesized by dual ion beam deposition , 1986 .

[9]  D. Mitzi,et al.  Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application , 2016 .

[10]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[11]  F. Toma,et al.  Electronic Structure of Monoclinic BiVO4 , 2014 .

[12]  Tanaka,et al.  Optical band gap of the filled tetrahedral semiconductor LiZnN. , 1994, Physical review. B, Condensed matter.

[13]  J. J. Wang,et al.  Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3 , 2011 .

[14]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[15]  Xiaoqing Pan,et al.  Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process , 2016 .

[16]  L. Peter,et al.  Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors , 2011 .

[17]  Yat Li,et al.  Hydrogen generation from photoelectrochemical water splitting based on nanomaterials , 2009 .

[18]  D. Scanlon,et al.  Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. , 2016, Chemical communications.

[19]  A. Pasquarello,et al.  Comprehensive modeling of the band gap and absorption spectrum of BiVO4 , 2017 .

[20]  Prediction of high T(c) superconductivity in hole-doped LiBC. , 2001, Physical review letters.

[21]  J. Grossman,et al.  Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. , 2011, Nano letters.

[22]  A Paul Alivisatos,et al.  Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. , 2008, Nano letters.

[23]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[24]  Schultz,et al.  Charged local defects in extended systems , 2000, Physical review letters.

[25]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[26]  K. Jacobsen,et al.  Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3 , 2017 .

[27]  Ling-yi Huang,et al.  Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3 , 2013 .

[28]  A. Zunger,et al.  Instilling defect tolerance in new compounds. , 2017, Nature materials.

[29]  B. Tell,et al.  Electrical Properties, Optical Properties, and Band Structure of CuGaS 2 and CuInS 2 , 1971 .

[30]  Kristian Sommer Thygesen,et al.  Localized atomic basis set in the projector augmented wave method , 2009, 1303.0348.

[31]  Taylor D. Sparks,et al.  Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations , 2013 .

[32]  E. Baerends,et al.  Self-consistent approximation to the Kohn-Sham exchange potential. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[34]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[35]  R. Riedel,et al.  Electronic structure and band gap of oxygen bearing c‐Zr3N4 and of c‐Hf3N4 by soft X‐ray spectroscopy , 2014 .

[36]  D. H. Wang,et al.  Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis , 2016 .

[37]  J. Turner,et al.  Preparation and photocharacterization of Cu–Sb–Se films by electrodeposition technique , 2003 .

[38]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[39]  Stephan Lany,et al.  CuSbSe2 photovoltaic devices with 3% efficiency , 2015, 1505.02311.

[40]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[41]  Richard C. Ropp,et al.  Encyclopedia of the Alkaline Earth Compounds , 2013 .

[42]  T. T. Rantala,et al.  Kohn-Sham potential with discontinuity for band gap materials , 2010, 1003.0296.

[43]  Fawzi Mohamed,et al.  Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats , 2017, npj Computational Materials.

[44]  M. Moustafa,et al.  Growth and band gap determination of the ZrS x Se 2-x single crystal series , 2009 .

[45]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[46]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[47]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[48]  G. A. Chamberlain,et al.  ORGANIC SOLAR CELLS: A REVIEW , 1983 .

[49]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[50]  Svetlozar Nestorov,et al.  The Computational Materials Repository , 2012, Computing in Science & Engineering.

[51]  Riccarda Caputo Exploring the structure–composition phase space of lithium borocarbide, LixBC for x ≤ 1 , 2013 .

[52]  O. Madelung Semiconductors: Data Handbook , 2003 .

[53]  M. Meuris,et al.  Fabrication and characterization of ternary Cu8SiS6 and Cu8SiSe6 thin film layers for optoelectronic applications , 2016 .

[54]  Ib Chorkendorff,et al.  2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs , 2014 .

[55]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[56]  M. Kanatzidis,et al.  Performance Enhancement of Lead-Free Tin-Based Perovskite Solar Cells with Reducing Atmosphere-Assisted Dispersible Additive , 2017 .

[57]  Christopher J. Traverse,et al.  All vapor-deposited lead-free doped CsSnBr3 planar solar cells , 2016 .

[58]  K. Kushida,et al.  Growth and band gap of the filled tetrahedral semiconductor LiMgN , 1999 .

[59]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[60]  K. Jacobsen,et al.  Defect-Tolerant Monolayer Transition Metal Dichalcogenides. , 2016, Nano letters.

[61]  C. Cardoso,et al.  On the electronic structure of the semiconducting compounds Mg3Bi2 and Mg3Sb2 , 1984 .

[62]  W. E. Spicer,et al.  Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-Antimony Compounds , 1958 .

[63]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[64]  Wei,et al.  Electronic structure of M3ISb-type filled tetrahedral semiconductors. , 1987, Physical review. B, Condensed matter.

[65]  K. Jacobsen,et al.  II–IV–V2 and III–III–V2 Polytypes as Light Absorbers for Single Junction and Tandem Photovoltaic Devices , 2017 .

[66]  K. Butler,et al.  Computational materials design of crystalline solids. , 2016, Chemical Society reviews.

[67]  Claudia N. Hoth,et al.  Organic Solar Cells , 2016 .

[68]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[69]  Angela N. Fioretti,et al.  Defect Tolerant Semiconductors for Solar Energy Conversion. , 2014, The journal of physical chemistry letters.

[70]  David J. Singh,et al.  Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides , 2017, Advanced materials.

[71]  T. Sritharan,et al.  Origin of Photocarrier Losses in Iron Pyrite (FeS2) Nanocubes. , 2016, ACS nano.

[72]  G. M. De'munari,et al.  Photoemissive Yield of Cs3Sb Photocathode and Its Dependence on Temperature , 1967 .

[73]  Jan Augustynski,et al.  Highly efficient water splitting by a dual-absorber tandem cell , 2012, Nature Photonics.

[74]  Keqiang Chen,et al.  Enhanced visible photocatalytic activity of Cu2O nanocrystal/titanate nanobelt heterojunctions by a self-assembly process , 2014 .

[75]  Alfredo Pasquarello,et al.  Finite-size supercell correction schemes for charged defect calculations , 2012 .

[76]  Richard N. Briskman,et al.  A study of electrodeposited cuprous oxide photovoltaic cells , 1992 .

[77]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[78]  R. Amal,et al.  Solar hydrogen evolution using a CuGaS2 photocathode improved by incorporating reduced graphene oxide , 2015 .

[79]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[80]  S. C. Parker,et al.  Phase stability and transformations in the halide perovskite CsSnI 3 , 2015 .

[81]  K. Kim,et al.  STRUCTURAL AND OPTICAL CHARACTERIZATION OF CU3N FILMS PREPARED BY REACTIVE RF MAGNETRON SPUTTERING , 2001 .

[82]  M. Green Thin-film solar cells: review of materials, technologies and commercial status , 2007 .

[83]  Rakesh Agrawal,et al.  Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.