Use of reference points for solving MONLP problems

Abstract The paper discusses a scalar problem that uses a reference point for solving the multiobjective nonlinear programming (MONLP) problem. Some properties of the solution of this scalar problem are described. In order to improve the achieved value of one criterion, only the corresponding component of the reference point has to be changed.

[1]  Wan Seon Shin,et al.  Interactive multiple objective optimization: Survey I - continuous case , 1991, Comput. Oper. Res..

[2]  Simon French,et al.  Multi-Objective Decision Analysis with Engineering and Business Applications , 1983 .

[3]  H. Moskowitz,et al.  Comparative evaluation of prior versus progressive articulation of preference in bicriterion optimization , 1986 .

[4]  G. W. Evans,et al.  An Overview of Techniques for Solving Multiobjective Mathematical Programs , 1984 .

[5]  Hirotaka Nakayama Trade-off analysis using parametric optimization techniques , 1992 .

[6]  Joseph J. Moder,et al.  Handbook of operations research , 1978 .

[7]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[8]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[9]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[10]  Erhan Erkut,et al.  Analytical models for locating undesirable facilities , 1989 .

[11]  F. Plastria Solving general continuous single facility location problems by cutting planes , 1987 .

[12]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[13]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[14]  Boyan Metev,et al.  Use of reference points for MOLP problems analysis , 1993 .

[15]  Hirotaka Nakayama On the Components in Interactive Multiobjective Programming Methods , 1985 .

[16]  G. A. Garreau,et al.  Mathematical Programming and Control Theory , 1979, Mathematical Gazette.

[17]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[18]  Andrzej P. Wierzbicki,et al.  Aspiration Based Decision Support Systems , 1989 .

[19]  R. Chandrasekaran,et al.  A note on the m-center problem with rectilinear distances , 1988 .

[20]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[21]  R. Soland,et al.  An interactive branch-and-bound algorithm for multiple criteria optimization , 1986 .

[22]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[23]  Jyrki Wallenius,et al.  A multiple objective linear programming decision support system , 1990, Decis. Support Syst..