Finite abstractions with robustness margins for temporal logic-based control synthesis

Abstract This paper introduces a notion of finite abstractions that can be used to synthesize robust controllers for dynamical systems from temporal logic specifications. These finite abstractions, equipped with certain robustness margins, provide a unified approach to various issues commonly encountered in implementing control systems, such as inter-sample behaviors of a sampled-data system, effects of imperfect state measurements and unmodeled dynamics. The main results of this paper demonstrate that the robustness margins can effectively account for the mismatches between a control system and its finite abstractions used for control synthesis. The quantitative nature of the robustness margins also makes it possible to study the trade-offs between the performance of controllers and their robustness against various types of adversaries (e.g., delays, measurement errors, or modeling uncertainties). We use a simple adaptive cruise control (ACC) example to illustrate such robustness–performance trade-offs.

[1]  Gunther Reissig,et al.  Computing Abstractions of Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[2]  Amir Pnueli,et al.  Synthesis of Reactive(1) Designs , 2006, VMCAI.

[3]  Daniel Liberzon,et al.  Limited-information control of hybrid systems via reachable set propagation , 2013, HSCC '13.

[4]  Jun-ichi Imura,et al.  Discrete Abstractions of Nonlinear Systems Based on Error Propagation Analysis , 2012, IEEE Transactions on Automatic Control.

[5]  Necmiye Ozay,et al.  Abstraction, discretization, and robustness in temporal logic control of dynamical systems , 2014, HSCC.

[6]  Rüdiger Ehlers,et al.  Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis , 2011, NASA Formal Methods.

[7]  Paulo Tabuada,et al.  Symbolic Models for Nonlinear Control Systems: Alternating Approximate Bisimulations , 2007, SIAM J. Control. Optim..

[8]  Antoine Girard,et al.  CoSyMA: a tool for controller synthesis using multi-scale abstractions , 2013, HSCC '13.

[9]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[10]  Danielle C. Tarraf,et al.  A Control-Oriented Notion of Finite State Approximation , 2011, IEEE Transactions on Automatic Control.

[11]  Paulo Tabuada,et al.  Robust discrete synthesis against unspecified disturbances , 2011, HSCC '11.

[12]  Manuel Mazo,et al.  Finite abstractions of networked control systems , 2014, 53rd IEEE Conference on Decision and Control.

[13]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning with deterministic μ-calculus specifications , 2012, 2012 American Control Conference (ACC).

[14]  Antoine Girard,et al.  Approximation Metrics for Discrete and Continuous Systems , 2006, IEEE Transactions on Automatic Control.

[15]  Paulo Tabuada,et al.  Abstracting and refining robustness for cyber-physical systems , 2014, HSCC.

[16]  Paulo Tabuada,et al.  Symbolic models for nonlinear time-delay systems using approximate bisimulations , 2010, Syst. Control. Lett..

[17]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[18]  Ufuk Topcu,et al.  Receding Horizon Temporal Logic Planning , 2012, IEEE Transactions on Automatic Control.

[19]  Calin Belta,et al.  A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications , 2008, IEEE Transactions on Automatic Control.

[20]  George J. Pappas,et al.  Robustness of temporal logic specifications for continuous-time signals , 2009, Theor. Comput. Sci..

[21]  Christel Baier,et al.  Principles of model checking , 2008 .

[22]  Paulo Tabuada,et al.  Preliminary results on correct-by-construction control software synthesis for adaptive cruise control , 2014, 53rd IEEE Conference on Decision and Control.

[23]  Paulo Tabuada,et al.  Approximately bisimilar symbolic models for nonlinear control systems , 2007, Autom..

[24]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[25]  Ufuk Topcu,et al.  Reactive controllers for differentially flat systems with temporal logic constraints , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[26]  Ufuk Topcu,et al.  Synthesis of Reactive Switching Protocols From Temporal Logic Specifications , 2013, IEEE Transactions on Automatic Control.

[27]  Stephan Merz,et al.  Model Checking , 2000 .

[28]  Richard M. Murray,et al.  Optimal Control of Nonlinear Systems with Temporal Logic Specifications , 2016, ISRR.

[29]  Maria Domenica Di Benedetto,et al.  A symbolic approach to the design of nonlinear networked control systems , 2012, HSCC '12.

[30]  Ufuk Topcu,et al.  On synthesizing robust discrete controllers under modeling uncertainty , 2012, HSCC '12.

[31]  Ufuk Topcu,et al.  TuLiP: a software toolbox for receding horizon temporal logic planning , 2011, HSCC '11.

[32]  Manuel Mazo,et al.  Symbolic Models for Nonlinear Control Systems Without Stability Assumptions , 2010, IEEE Transactions on Automatic Control.

[33]  Hadas Kress-Gazit,et al.  Temporal-Logic-Based Reactive Mission and Motion Planning , 2009, IEEE Transactions on Robotics.

[34]  Richard M. Murray,et al.  Synthesis of correct-by-construction control protocols for hybrid systems using partial state information , 2014, 2014 American Control Conference.

[35]  Richard M. Murray,et al.  Computing augmented finite transition systems to synthesize switching protocols for polynomial switched systems , 2013, 2013 American Control Conference.

[36]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[37]  J PappasGeorge,et al.  Temporal logic motion planning for dynamic robots , 2009 .

[38]  Paulo Tabuada,et al.  Verification and Control of Hybrid Systems - A Symbolic Approach , 2009 .

[39]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[40]  Karl-Erik Årzén,et al.  The Jitter Margin and Its Application in the Design of Real-Time Control Systems , 2004 .

[41]  Necmiye Ozay,et al.  o puting finite abstractions ith robustness argins via local reachable set over-approxi ation , 2015 .

[42]  Munther A. Dahleh,et al.  A Framework for Robust Stability of Systems Over Finite Alphabets , 2008, IEEE Transactions on Automatic Control.

[43]  Paulo Tabuada,et al.  Linear Time Logic Control of Discrete-Time Linear Systems , 2006, IEEE Transactions on Automatic Control.