Motor context coordinates visually guided walking in Drosophila

Course control is critical for the acquisition of spatial information during exploration and navigation, and it is thought to rely on neural circuits that process locomotive-related multimodal signals. However, which circuits underlie this control, and how multimodal information contributes to the control system are questions poorly understood. We used Virtual Reality to examine the role of self-generated visual signals (visual feedback) on the control of exploratory walking in flies. Exploratory flies display two distinct motor contexts, characterized by low speed and fast rotations, or by high speed and slow rotations, respectively. Flies use visual feedback to control body rotations, but in a motor-context specific manner, primarily when walking at high speed. Different populations of visual motion-sensitive cells estimate body rotations via congruent, multimodal inputs, and drive compensatory rotations. However, their effective contribution to course control is dynamically tuned by a speed-related signal. Our data identifies visual networks with a multimodal circuit mechanism for adaptive course control and suggests models for how visual feedback is combined with internal signals to guide exploratory course control.

[1]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[2]  D. H. Edwards,et al.  Sensory Feedback in the Control of Posture and Locomotion , 2017 .

[3]  Kristi Morgansen,et al.  Monocular distance estimation from optic flow during active landing maneuvers , 2014, Bioinspiration & biomimetics.

[4]  M. Cynader,et al.  Electrophysiology of medial terminal nucleus of accessory optic system in the cat. , 1982, Journal of neurophysiology.

[5]  Roland Strauss,et al.  Virtual-Reality Techniques Resolve the Visual Cues Used by Fruit Flies to Evaluate Object Distances , 2002, Current Biology.

[6]  Anmo J Kim,et al.  Cellular evidence for efference copy in Drosophila visuomotor processing , 2015, Nature Neuroscience.

[7]  Achim Kempf,et al.  On Path Integration On , 1996 .

[8]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[9]  David W. Franklin,et al.  Computational Mechanisms of Sensorimotor Control , 2011, Neuron.

[10]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[11]  Michael H. Dickinson,et al.  Body saccades of Drosophila consist of stereotyped banked turns , 2015, The Journal of Experimental Biology.

[12]  Thomas R. Clandinin,et al.  Sequential Nonlinear Filtering of Local Motion Cues by Global Motion Circuits , 2018, Neuron.

[13]  J.,et al.  Optic Flow , 2014, Computer Vision, A Reference Guide.

[14]  Vijay Iyer,et al.  Ephus: Multipurpose Data Acquisition Software for Neuroscience Experiments , 2010, Front. Neural Circuits.

[15]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[16]  R. Mooney,et al.  Deafening Drives Cell-Type-Specific Changes to Dendritic Spines in a Sensorimotor Nucleus Important to Learned Vocalizations , 2012, Neuron.

[17]  M. Sommer,et al.  Corollary discharge across the animal kingdom , 2008, Nature Reviews Neuroscience.

[18]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[19]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[20]  R. Andersen,et al.  Mechanisms of Heading Perception in Primate Visual Cortex , 1996, Science.

[21]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[22]  Mark A. Frye,et al.  Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila , 2015, Current Biology.

[23]  Aristides B. Arrenberg,et al.  Functional Architecture of an Optic Flow-Responsive Area that Drives Horizontal Eye Movements in Zebrafish , 2014, Neuron.

[24]  M. Dickinson,et al.  Object preference by walking fruit flies, Drosophila melanogaster, is mediated by vision and graviperception , 2010, Journal of Experimental Biology.

[25]  Peter Diehl,et al.  Radiotelemetric monitoring of heart-rate responses to song playback in blackbirds (Turdus merula) , 2004, Behavioral Ecology and Sociobiology.

[26]  J. Gordon,et al.  Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics. , 2015, Cell reports.

[27]  Julie M. Harris,et al.  Guidance of locomotion on foot uses perceived target location rather than optic flow , 1998, Current Biology.

[28]  F. Bremmer,et al.  Perception of self-motion from visual flow , 1999, Trends in Cognitive Sciences.

[29]  Bart R. H. Geurten,et al.  Saccadic body turns in walking Drosophila , 2014, Front. Behav. Neurosci..

[30]  Edward Chace Tolman,et al.  Studies in spatial learning. I. Orientation and the short-cut. 1946. , 1992, Journal of experimental psychology. General.

[31]  Surya Ganguli,et al.  Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation , 2018, Nature Neuroscience.

[32]  M. Giurfa,et al.  The tarsal taste of honey bees: behavioral and electrophysiological analyses , 2014, Front. Behav. Neurosci..

[33]  Mandyam V Srinivasan,et al.  Visual control of navigation in insects and its relevance for robotics , 2011, Current Opinion in Neurobiology.

[34]  G. Geiger,et al.  Visual orientation behaviour of flies after selective laser beam ablation of interneurones , 1981, Nature.

[35]  Th. Brandt,et al.  Optisch induzierte Pseudocoriolis-Effekte und Circularvektion , 2004, Archiv für Psychiatrie und Nervenkrankheiten.

[36]  J. Simpson,et al.  The accessory optic system of rabbit. I. Basic visual response properties. , 1988, Journal of neurophysiology.

[37]  G. Geiger Is there a motion-independent position computation of an object in the visual system of the housefly? , 1981, Biological Cybernetics.

[38]  D. E.Vonholstan,et al.  The Principle of Reafference : Interactions Between the Central Nervous System and the Peripheral Organs , 2011 .

[39]  F A Mussa-Ivaldi,et al.  Computations underlying the execution of movement: a biological perspective. , 1991, Science.

[40]  B. Cohen,et al.  Interaction of the body, head, and eyes during walking and turning , 2000, Experimental Brain Research.

[41]  W. Berger,et al.  Visual influence on human locomotion , 1997 .

[42]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[43]  Renaud Lancelot,et al.  Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways , 2018, Current Biology.

[44]  David S. Lorberbaum,et al.  Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development , 2017, eLife.

[45]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[46]  Irving E. Wang,et al.  Tissue absence initiates regeneration through Follistatin-mediated inhibition of Activin signaling , 2013, eLife.

[47]  A. Reynolds Current status and future directions of Lévy walk research , 2018, Biology Open.

[48]  C. Wehrhahn,et al.  Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[50]  Xaq Pitkow,et al.  Inference in the Brain: Statistics Flowing in Redundant Population Codes , 2017, Neuron.

[51]  Alexander Y Katsov,et al.  Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.

[52]  Rachel I. Wilson,et al.  Transient and Specific Inactivation of Drosophila Neurons In Vivo Using a Native Ligand-Gated Ion Channel , 2013, Current Biology.

[53]  Pietro Perona,et al.  Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila , 2014, Cell.

[54]  U. Bässler,et al.  Pattern generation for stick insect walking movements—multisensory control of a locomotor program , 1998, Brain Research Reviews.

[55]  Thomas R Clandinin,et al.  Dynamic structure of locomotor behavior in walking fruit flies , 2017, eLife.

[56]  Martin Egelhaaf,et al.  Head and body stabilization in blowflies walking on differently structured substrates , 2012, Journal of Experimental Biology.

[57]  J. Becker,et al.  Mechanisms of action of adrenal medulla grafts: the possible role of peripheral and central dopamine systems. , 1990, Progress in brain research.

[58]  Joshua W. Shaevitz,et al.  Mapping the structure of drosophilid behavior , 2013, bioRxiv.

[59]  A. Borst Fly visual course control: behaviour, algorithms and circuits , 2014, Nature Reviews Neuroscience.

[60]  Marie P Suver,et al.  An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila , 2016, The Journal of Neuroscience.

[61]  Martin Egelhaaf,et al.  Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets , 2014, Front. Behav. Neurosci..

[62]  Alex S. Mauss,et al.  Bi-directional Control of Walking Behavior by Horizontal Optic Flow Sensors , 2018, Current Biology.

[63]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[64]  R. Mann,et al.  Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster , 2013, eLife.

[65]  A. Büschges,et al.  Inter-leg coordination in the control of walking speed in Drosophila , 2013, Journal of Experimental Biology.

[66]  J. H. van Hateren,et al.  Saccadic head and thorax movements in freely walking blowflies , 2004, Journal of Comparative Physiology A.

[67]  Robert J Full,et al.  A single muscle's multifunctional control potential of body dynamics for postural control and running , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[68]  Richard M. Murray,et al.  Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila , 2013, PLoS Comput. Biol..

[69]  B. Dickson,et al.  FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila , 2014, Nature Methods.

[70]  M. Brecht,et al.  Representation of egomotion in rat's trident and E-row whisker cortices , 2016, Nature Neuroscience.

[71]  Kathleen Turano,et al.  Visual discrimination between a curved and straight path of self motion: Effects of forward speed , 1994, Vision Research.

[72]  Hans Straka,et al.  A New Perspective on Predictive Motor Signaling , 2018, Current Biology.

[73]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[74]  Karl Kral,et al.  The functional significance of mantis peering behaviour , 2012 .

[75]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[76]  Michael B. Reiser,et al.  The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila , 2017, Neuron.

[77]  M. Dickinson,et al.  A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster , 2006, Journal of Experimental Biology.

[78]  L. Britto,et al.  The accessory optic system in pigeons: receptive field properties of identified neurons , 1981, Brain Research.

[79]  William H. Warren,et al.  Optic flow is used to control human walking , 2001, Nature Neuroscience.

[80]  Jeffery W. Rankin,et al.  How do treadmill speed and terrain visibility influence neuromuscular control of guinea fowl locomotion? , 2015, Journal of Experimental Biology.

[81]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[82]  V Henn,et al.  Gaze stabilization in the primate. The interaction of the vestibulo-ocular reflex, optokinetic nystagmus, and smooth pursuit. , 1987, Reviews of physiology, biochemistry and pharmacology.

[83]  Michael H. Dickinson,et al.  Idiothetic Path Integration in the Fruit Fly Drosophila melanogaster , 2017, Current Biology.

[84]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[85]  T. Higham,et al.  Context-dependent changes in motor control and kinematics during locomotion: modulation and decoupling , 2014, Proceedings of the Royal Society B: Biological Sciences.

[86]  J. L. de la Pompa,et al.  A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice , 2018, eLife.

[87]  Paul A. Braren,et al.  Wayfinding on foot from information in retinal, not optical, flow. , 1992, Journal of experimental psychology. General.

[88]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[89]  Daniel J. Hannon,et al.  Direction of self-motion is perceived from optical flow , 1988, Nature.

[90]  G. DeAngelis,et al.  Neural correlates of multisensory cue integration in macaque MSTd , 2008, Nature Neuroscience.

[91]  William Bialek,et al.  Mapping the stereotyped behaviour of freely moving fruit flies , 2013, Journal of The Royal Society Interface.

[92]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[93]  O Kiehn,et al.  Midbrain circuits that set locomotor speed and gait selection , 2017, Nature.

[94]  P. Aerts,et al.  Finite-element modelling reveals force modulation of jaw adductors in stag beetles , 2014, Journal of The Royal Society Interface.

[95]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[96]  Gilles de Hollander Combining Computational Models of Cognition and Neural Data to Learn about Mixed Task Strategies , 2016 .

[97]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology.

[98]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[99]  Kristin Branson,et al.  JAABA: interactive machine learning for automatic annotation of animal behavior , 2013, Nature Methods.

[100]  R. Strauss,et al.  Coordination of legs during straight walking and turning in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[101]  James P. Bohnslav,et al.  A faithful internal representation of walking movements in the Drosophila visual system , 2016, Nature Neuroscience.

[102]  Farhan Mohammad,et al.  Optogenetic inhibition of behavior with anion channelrhodopsins , 2017, Nature Methods.

[103]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[104]  Michael H Dickinson,et al.  The functional organization of descending sensory-motor pathways in Drosophila , 2017, bioRxiv.

[105]  M Egelhaaf,et al.  Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements , 2006, Journal of Experimental Biology.

[106]  Michael H Dickinson,et al.  Visual stimulation of saccades in magnetically tethered Drosophila , 2006, Journal of Experimental Biology.

[107]  J. Gibson Visually controlled locomotion and visual orientation in animals. , 1998, British journal of psychology.

[108]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[109]  Michael H. Dickinson,et al.  A Descending Neuron Correlated with the Rapid Steering Maneuvers of Flying Drosophila , 2017, Current Biology.

[110]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[111]  Ian S. Macdonald,et al.  Hexameric GFP and mCherry Reporters for the Drosophila GAL4, Q, and LexA Transcription Systems , 2014, Genetics.

[112]  Stephen S. Gisselbrecht,et al.  New fluorescent protein reporters for use with the drosophila gal4 expression system and for vital detection of balancer chromosomes , 2002, Genesis.

[113]  Volker Henn,et al.  Gaze stabilization in the primate , 1987 .

[114]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[115]  Jochen Zeil,et al.  The territorial flight of male houseflies (Fannia canicularis L.) , 1986, Behavioral Ecology and Sociobiology.

[116]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[117]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[118]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[119]  Julie M. Harris,et al.  Optic flow and scene structure do not always contribute to the control of human walking , 2002, Vision Research.

[120]  Matthias Wittlinger,et al.  Optic flow odometry operates independently of stride integration in carried ants , 2016, Science.

[121]  J. Spudich,et al.  Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics , 2015, Science.

[122]  E. Tolman,et al.  Studies in spatial learning: Orientation and the short-cut. , 1946, Journal of experimental psychology.

[123]  Werner Reichardt,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 2004, Biological Cybernetics.

[124]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[125]  B. J. Frost,et al.  Visual response characteristics of neurons in nucleus of basal optic root of pigeons , 2004, Experimental Brain Research.

[126]  Y. Diao,et al.  Sensitivity of LS neurons to optic flow stimuli , 1997 .

[127]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[128]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[129]  Cheng Lyu,et al.  Quantitative Predictions Orchestrate Visual Signaling in Drosophila , 2017, Cell.

[130]  R. Hengstenberg,et al.  Binocular contributions to optic flow processing in the fly visual system. , 2001, Journal of neurophysiology.

[131]  Kevin M. Cury,et al.  DeepLabCut: markerless pose estimation of user-defined body parts with deep learning , 2018, Nature Neuroscience.

[132]  R. Wolf,et al.  Reafferent control of optomotor yaw torque inDrosophila melanogaster , 1988, Journal of Comparative Physiology A.

[133]  R A Abrams,et al.  Optimality in human motor performance: ideal control of rapid aimed movements. , 1988, Psychological review.

[134]  Thomas R Clandinin,et al.  Motion-detecting circuits in flies: coming into view. , 2014, Annual review of neuroscience.

[135]  Kenneth H. Britten,et al.  Mechanisms of self-motion perception. , 2008, Annual review of neuroscience.

[136]  Karl Georg Götz,et al.  Visual control of locomotion in the walking fruitflyDrosophila , 1973, Journal of comparative physiology.

[137]  W. Berger,et al.  Visual influence on human locomotion Modulation to changes in optic flow , 1997, Experimental Brain Research.

[138]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[139]  C. Larsen,et al.  Odd-skipped labels a group of distinct neurons associated with the mushroom body and optic lobe in the adult Drosophila brain , 2013, The Journal of comparative neurology.

[140]  Mala Murthy,et al.  Multi-channel acoustic recording and automated analysis of Drosophila courtship songs , 2013, BMC Biology.

[141]  B. Roitberg Searching Behavior: the Behavioral Ecology of Finding Resources , 1992 .

[142]  G. DeAngelis,et al.  Representation of Vestibular and Visual Cues to Self-Motion in Ventral Intraparietal Cortex , 2011, The Journal of Neuroscience.

[143]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[144]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[145]  Roland Hengstenberg,et al.  Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig. , 1992, Journal of Comparative Physiology A.