Concepts and Techniques

1 The Modern Microscope Today.- 2 The Quest for Ultra-High Resolution.- 3 Z-Contrast Imaging in the Scanning Transmission Electron Microscope.- 4 Inelastic Scattering in Electron Microscopy-Effects, Spectrometry and Imaging.- 5 Quantitative Analysis of High-Resolution Atomic Images.- 6 Electron Crystallography-Structure determination by combining HREM, Crystallographic image processing and electron diffraction.- 7 Electron Amorphography.- 8 Weak-Beam Electron Microscopy.- 9 Point Group and Space Group Identification by Convergent Beam Electron Diffraction.- 10 Advanced Techniques in TEM Specimen Preparation.

[1]  Emil L. Post Finite combinatory processes—formulation , 1936, Journal of Symbolic Logic.

[2]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[3]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[4]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[5]  R. Prim Shortest connection networks and some generalizations , 1957 .

[6]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[7]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[8]  D. Marr,et al.  Artificial Intelligence - A Personal View , 1976, Artif. Intell..

[9]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[10]  Aviezri S. Fraenkel,et al.  Computing a Perfect Strategy for n x n Chess Requires Time Exponential in n , 1981, J. Comb. Theory, Ser. A.

[11]  Shlomo Moran,et al.  Non Deterministic Polynomial Optimization Problems and their Approximations , 1977, Theor. Comput. Sci..

[12]  Dedre Gentner,et al.  Structure-Mapping: A Theoretical Framework for Analogy , 1983, Cogn. Sci..

[13]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[15]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[16]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[17]  H. Simon,et al.  Invariants of human behavior. , 1990, Annual review of psychology.

[18]  J. Stephen Judd,et al.  Neural network design and the complexity of learning , 1990, Neural network modeling and connectionism.

[19]  Uwe Schöning,et al.  Complexity Cores and Hard Problem Instances , 1990, SIGAL International Symposium on Algorithms.

[20]  Dean Allemang,et al.  The Computational Complexity of Abduction , 1991, Artif. Intell..

[21]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[22]  Paul Thagard,et al.  Computational Tractability and Conceptual Coherence: Why Do Computer Scientists Believe that P≠NP? , 1993, Canadian Journal of Philosophy.

[23]  Peter C. Fishburn,et al.  Subset preferences in linear and nonlinear utility theory , 1993 .

[24]  Ian Parberry,et al.  Circuit complexity and neural networks , 1994 .

[25]  Pekka Orponen,et al.  Computational complexity of neural networks: a survey , 1994 .

[26]  Solomon Eyal Shimony,et al.  Finding MAPs for Belief Networks is NP-Hard , 1994, Artif. Intell..

[27]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[28]  Hava T. Siegelmann,et al.  Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[29]  T. Gelder,et al.  What Might Cognition Be, If Not Computation? , 1995 .

[30]  Kenneth D. Forbus,et al.  MAC/FAC: A Model of Similarity-Based Retrieval , 1995, Cogn. Sci..

[31]  Georg Gottlob,et al.  The complexity of logic-based abduction , 1993, JACM.

[32]  Peter C. Fishburn,et al.  Binary interactions and subset choice , 1996 .

[33]  Jirí Síma,et al.  Back-propagation is not Efficient , 1996, Neural Networks.

[34]  Peter Wegner,et al.  Why interaction is more powerful than algorithms , 1997, CACM.

[35]  Rick Grush,et al.  GAPS IN PENROSE ' S TOILINGS , 1997 .

[36]  Michael Prasse,et al.  Why Church's Thesis Still Holds. Some Notes on Peter Wegner's Tracts on Interaction and Computability , 1998, Comput. J..

[37]  Paul Thagard,et al.  Coherence as Constraint Satisfaction , 2019, Cogn. Sci..

[38]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[39]  P. Thagard,et al.  Coherence in Thought and Action , 2000 .

[40]  E. Millgram Coherence: The Price of the Ticket , 2000 .

[41]  D. Gentner,et al.  Structure mapping in the comparison process. , 2000, The American journal of psychology.

[42]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[43]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[44]  Dan Sperber,et al.  Pragmatics, modularity and mindreading , 2002 .

[45]  Michael Wooldridge,et al.  Complexity Results for Agent Design Problems , 2003 .

[46]  Pekka Orponen,et al.  General-Purpose Computation with Neural Networks: A Survey of Complexity Theoretic Results , 2003, Neural Computation.

[47]  P. Thagard Why wasn't O.J. convicted? Emotional coherence in legal inference , 2003, Cognition & emotion.

[48]  G. Vigliocco,et al.  Language in mind , 2004 .

[49]  A. Darwiche,et al.  Complexity Results and Approximation Strategies for MAP Explanations , 2011, J. Artif. Intell. Res..

[50]  Michael Wooldridge,et al.  The complexity of agent design problems: Determinism and history dependence , 2005, Annals of Mathematics and Artificial Intelligence.

[51]  S. Stich,et al.  The Innate Mind: Structure and Contents , 2005 .

[52]  Iris van Rooij,et al.  Sources of complexity in subset choice , 2005 .

[53]  Kenneth D. Forbus,et al.  Companion Cognitive Systems: A Step towards Human-Level AI , 2004, AI Mag..

[54]  Yll Haxhimusa,et al.  Traveling Salesman Problem: A Foveating Pyramid Model , 2006, J. Probl. Solving.

[55]  J. Tenenbaum,et al.  Special issue on “Probabilistic models of cognition , 2022 .

[56]  Michael Schmitt,et al.  On the Complexity of Learning Lexicographic Strategies , 2006, J. Mach. Learn. Res..

[57]  Douglas Vickers,et al.  Human Performance on Visually Presented Traveling Salesperson Problems with Varying Numbers of Nodes , 2006, J. Probl. Solving.

[58]  Steven Weinstein,et al.  Is the Brain a Quantum Computer? , 2006, Cogn. Sci..

[59]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[60]  Book Reviews , 2007 .

[61]  W. Paul Cockshott,et al.  Are There New Models of Computation? Reply to Wegner and Eberbach , 2007, Comput. J..

[62]  I. V. van Rooij,et al.  The tractable cognition thesis. , 2008, Cognitive science.

[63]  Jan Arne Telle,et al.  An Overview of Techniques for Designing Parameterized Algorithms , 2008, Comput. J..

[64]  Gustav Nordh,et al.  What makes propositional abduction tractable , 2008, Artif. Intell..

[65]  Rolf Niedermeier,et al.  Techniques for Practical Fixed-Parameter Algorithms , 2007, Comput. J..

[66]  Iris van Rooij,et al.  Parameterized Complexity in Cognitive Modeling: Foundations, Applications and Opportunities , 2008, Comput. J..

[67]  Gerd Gigerenzer,et al.  Why Heuristics Work , 2008, Perspectives on psychological science : a journal of the Association for Psychological Science.

[68]  I. Rooij,et al.  Connectionist semantic systematicity , 2009, Cognition.

[69]  Kenneth D. Forbus,et al.  Reviving Inert Knowledge: Analogical Abstraction Supports Relational Retrieval of Past Events , 2009, Cogn. Sci..

[70]  James L. McClelland The Place of Modeling in Cognitive Science , 2009, Top. Cogn. Sci..

[71]  Chris L. Baker,et al.  Action understanding as inverse planning , 2009, Cognition.

[72]  Angela Schwering,et al.  Syntactic principles of heuristic-driven theory projection , 2009, Cognitive Systems Research.

[73]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[74]  Iris van Rooij,et al.  Intractability and the use of heuristics in psychological explanations , 2012, Synthese.

[75]  Adam N Sanborn,et al.  Rational approximations to rational models: alternative algorithms for category learning. , 2010, Psychological review.

[76]  David J. Chalmers,et al.  A Computational Foundation for the Study of Cognition , 2011 .

[77]  Johan Kwisthout,et al.  Most probable explanations in Bayesian networks: Complexity and tractability , 2011, Int. J. Approx. Reason..

[78]  Iris van Rooij,et al.  Minesweeper May Not Be NP-Complete but Is Hard Nonetheless , 2011 .

[79]  Iris van Rooij,et al.  On the computational challenges of analogy-based generalization , 2011, Cognitive Systems Research.

[80]  Kenneth D. Forbus,et al.  Computational models of analogy. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[81]  Todd Wareham,et al.  What Does (and Doesn’t) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective , 2011, J. Probl. Solving.

[82]  Johan Kwisthout,et al.  Bayesian Intractability Is Not an Ailment That Approximation Can Cure , 2011, Cogn. Sci..

[83]  Moritz Müller,et al.  Parameterized Random Complexity , 2013, Theory of Computing Systems.

[84]  Paul Thagard,et al.  COHERENCE: THE PRICE IS RIGHT , 2012 .

[85]  Johan Kwisthout,et al.  Relevancy in Problem Solving: A Computational Framework , 2012, J. Probl. Solving.

[86]  Iris van Rooij,et al.  Intractability and approximation of optimization theories of cognition , 2012 .

[87]  Iris van Rooij Self-Organization Takes Time Too , 2012, Top. Cogn. Sci..

[88]  Johan Kwisthout,et al.  A computational-level explanation of the speed of goal inference , 2013 .

[89]  Johan Kwisthout,et al.  Bridging the gap between theory and practice of approximate Bayesian inference , 2013, Cognitive Systems Research.

[90]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[91]  Stefan Szeider,et al.  Parameterized Complexity Results for Exact Bayesian Network Structure Learning , 2014, J. Artif. Intell. Res..

[92]  Johan Kwisthout,et al.  Rational analysis, intractability, and the prospects of ‘as if’-explanations , 2014, Synthese.

[93]  Michael Öllinger,et al.  The dynamics of search, impasse, and representational change provide a coherent explanation of difficulty in the nine-dot problem , 2013, Psychological Research.

[94]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[95]  Johan Kwisthout,et al.  Tree-Width and the Computational Complexity of MAP Approximations in Bayesian Networks , 2015, J. Artif. Intell. Res..

[96]  Todd Wareham The Roles of Internal Representation and Processing in Problem Solving Involving Insight: A Computational Complexity Perspective , 2017, J. Probl. Solving.

[97]  Maria Otworowska,et al.  Demons of Ecological Rationality , 2018, Cogn. Sci..

[98]  Iris van Rooij,et al.  Parameterized Complexity of Theory of Mind Reasoning in Dynamic Epistemic Logic , 2018, Journal of Logic, Language and Information.

[99]  Richard P. Cooper,et al.  On the Relation Between Marr's Levels: A Response to Blokpoel (2017) , 2018, Top. Cogn. Sci..

[100]  Social categorization in connectionist models: A conceptual integration , 2018 .

[101]  Johan Kwisthout,et al.  Approximate inference in Bayesian networks: Parameterized complexity results , 2018, Int. J. Approx. Reason..

[102]  Ronald de Haan Parameterized Complexity in the Polynomial Hierarchy - Extending Parameterized Complexity Theory to Higher Levels of the Hierarchy , 2019, Lecture Notes in Computer Science.

[103]  Johan Kwisthout,et al.  Computational Resource Demands of a Predictive Bayesian Brain , 2019, Computational Brain & Behavior.