Searching for ductile superconducting Heusler X_2YZ compounds

Heusler compounds have always attracted a great deal of attention from researchers thanks to a wealth of interesting properties for technological applications. They are intermetallic ductile compounds, and some of them have been found to be superconducting. With this in mind, we perform an extensive study of the superconducting and elastic properties of the cubic (full-)Heusler family. Starting from thermodynamically stable compounds, we use ab initio methods for the calculation of the phonon spectra, electron-phonon couplings, superconducting critical temperatures and elastic tensors. By analyzing the statistical distributions of these properties and comparing them to anti-perovskites we recognize universal behaviors that should be common to all conventional superconductors while others turn out to be specific to the material family. The resulting data is used to train interpretable and predictive machine learning models, that are used to extend our knowledge of superconductivity in Heuslers and to provide an interpretation of our results. In total, we discover a total of 8 hypothetical materials with critical temperatures above 10 K, to be compared with the current record of Tc = 4.7 K in this family. Furthermore, we expect most of these materials to be highly ductile, making them potential candidates for the manufacture of wires and tapes for superconducting magnets.

[1]  Tiago F. T. Cerqueira,et al.  Large-scale machine-learning-assisted exploration of the whole materials space , 2022, ArXiv.

[2]  Tiago F. T. Cerqueira,et al.  Superconductivity in antiperovskites , 2022, npj Computational Materials.

[3]  Tiago F. T. Cerqueira,et al.  A dataset of 175k stable and metastable materials calculated with the PBEsol and SCAN functionals , 2022, Scientific Data.

[4]  Kristof T. Schütt,et al.  Roadmap on Machine learning in electronic structure , 2022, Electronic Structure.

[5]  E. R. Margine,et al.  The 2021 room-temperature superconductivity roadmap , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Kesong Yang,et al.  Review of high-throughput computational design of Heusler alloys , 2021 .

[7]  R. Cava,et al.  MgPd2Sb : A Mg-based Heusler-type superconductor , 2021, 2106.01133.

[8]  D. Miracle,et al.  Generalization of intrinsic ductile-to-brittle criteria by Pugh and Pettifor for materials with a cubic crystal structure , 2021, Scientific Reports.

[9]  P. R. Raghuvanshi,et al.  A high throughput search for efficient thermoelectric half-Heusler compounds , 2020, 2011.08134.

[10]  Gabriel Kronberger,et al.  Operon C++: an efficient genetic programming framework for symbolic regression , 2020, GECCO Companion.

[11]  Artem R. Oganov,et al.  A model of hardness and fracture toughness of solids , 2019, Journal of Applied Physics.

[12]  M. Marques,et al.  Recent advances and applications of machine learning in solid-state materials science , 2019, npj Computational Materials.

[13]  M. Eremets,et al.  A perspective on conventional high-temperature superconductors at high pressure: Methods and materials , 2019, 1905.06693.

[14]  Claudia Draxl,et al.  The NOMAD laboratory: from data sharing to artificial intelligence , 2019, Journal of Physics: Materials.

[15]  W. Everhart,et al.  Mechanical properties of Heusler alloys , 2019, Heliyon.

[16]  G. Fecher,et al.  Elastic properties and stability of Heusler compounds: Cubic Co2YZ compounds with L21 structure , 2019, Journal of Applied Physics.

[17]  Denali Molitor,et al.  Model Agnostic Supervised Local Explanations , 2018, NeurIPS.

[18]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[19]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[20]  V. Soprunyuk,et al.  Mechanical properties of half-Heusler alloys , 2016 .

[21]  Z. Ren,et al.  Studies on mechanical properties of thermoelectric materials by nanoindentation , 2015 .

[22]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[23]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[24]  Q. Xue,et al.  Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. , 2015, Nature materials.

[25]  S. Curtarolo,et al.  Nanograined Half‐Heusler Semiconductors as Advanced Thermoelectrics: An Ab Initio High‐Throughput Statistical Study , 2014, 1408.5859.

[26]  Stefano Curtarolo,et al.  Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.

[27]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[28]  Venkatrao Chunchu,et al.  Van Hove scenario and superconductivity in full Heusler alloy Pd2ZrGa , 2013 .

[29]  G. Han,et al.  DATA STORAGE: REVIEW OF HEUSLER COMPOUNDS , 2012, 1301.5455.

[30]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[31]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[32]  G. Fecher,et al.  Superconductivity in the Heusler family of intermetallics , 2012, 1205.0433.

[33]  Shuang Jia,et al.  Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. , 2010, Nature materials.

[34]  Claudia Felser,et al.  Tunable multifunctional topological insulators in ternary Heusler compounds. , 2010, Nature materials.

[35]  Kieron Burke,et al.  Erratum: Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces [Phys. Rev. Lett. 100 , 136406 (2008)] , 2009 .

[36]  K. L. Holman,et al.  Ni-based superconductor: Heusler compound ZrNi2Ga , 2008, 0808.2356.

[37]  Kosmas Prassides,et al.  Bulk superconductivity at 38 K in a molecular system. , 2008, Nature materials.

[38]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[39]  Hans Wondratschek,et al.  Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[40]  K. Ishida,et al.  Magnetic-field-induced shape recovery by reverse phase transformation , 2006, Nature.

[41]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[42]  S. Sakurada,et al.  Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds , 2005 .

[43]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[44]  C. Poole,et al.  Handbook of Superconductivity , 1999 .

[45]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Fisk,et al.  Superconductivity and magnetism in the Heusler alloys MPd2Pb (M=rare earth, Th, and U). , 1996, Physical review. B, Condensed matter.

[48]  M. Cantoni,et al.  Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system , 1993, Nature.

[49]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[50]  D. G. Pettifor,et al.  Theoretical predictions of structure and related properties of intermetallics , 1992 .

[51]  Meservey,et al.  Evidence for spin fluctuations in vanadium from a tunneling study of Fermi-liquid effects. , 1989, Physical review. B, Condensed matter.

[52]  Rasolt Superconductivity in high magnetic fields. , 1987, Physical review letters.

[53]  Yang,et al.  Coexistence of superconductivity and long-range magnetic order in ErPd2Sn. , 1986, Physical review. B, Condensed matter.

[54]  Malik,et al.  Coexistence of ordered magnetism and superconductivity in Pd2YbSn. , 1985, Physical review. B, Condensed matter.

[55]  Malik,et al.  Magnetic and Mössbauer studies on rare-earth-containing Heusler alloys Pd2RSn (R=Tb-Yb). , 1985, Physical review. B, Condensed matter.

[56]  Y. Yamaguchi,et al.  Superconductivity of Ni2NbX (X=Al, Ga and Sn) , 1985 .

[57]  J. Waszczak,et al.  Superconductivity in ternary Heusler intermetallic compounds , 1983 .

[58]  M. Erman,et al.  PtMnSb, a material with very high magneto‐optical Kerr effect , 1983 .

[59]  D. Dew-Hughes,et al.  Superconducting A-15 compounds: A review , 1975 .

[60]  R. Dynes,et al.  Transition temperature of strong-coupled superconductors reanalyzed , 1975 .

[61]  R. Dynes McMillan's equation and the Tc of superconductors , 1972 .

[62]  K. Carroll Elastic Constants of Niobium from 4.2° to 300°K , 1965 .

[63]  S. Engelsberg,et al.  Coupled Electron-Phonon System , 1963 .

[64]  D. Pines Superconductivity in the Periodic System , 1958 .

[65]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[66]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[67]  A. Dal Corso Elastic constants of beryllium: a first-principles investigation , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[68]  Hans Wondratschek,et al.  Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .

[69]  Philip B. Allen,et al.  Theory of Superconducting Tc , 1983 .

[70]  H. Suhl,et al.  Superconductivity in d- and f-band metals , 1980 .

[71]  B. Matthias Chapter V Superconductivity in the Periodic System , 1957 .

[72]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .