The SAT2002 competition

SAT Competition 2002 held in March–May 2002 in conjunction with SAT 2002 (the Fifth International Symposium on the Theory and Applications of Satisfiability Testing). About 30 solvers and 2300 benchmarks took part in the competition, which required more than 2 CPU years to complete the evaluation. In this report, we give the results of the competition, try to interpret them, and give suggestions for future competitions.

[1]  Gilles Dequen,et al.  A backbone-search heuristic for efficient solving of hard 3-SAT formulae , 2001, IJCAI.

[2]  Oliver Kullmann,et al.  First report on an adaptive density based branching rule for DLL-like SAT solvers , using a database for mixed random conjunctive normal forms created using the Advanced Encryption Standard ( AES ) , 2002 .

[3]  Fahiem Bacchus Exploring the Computational Tradeoff of more Reasoning and Less Searching , 2002 .

[4]  Osamu Watanabe,et al.  A Probabilistic 3-SAT Algorithm Further Improved , 2002, STACS.

[5]  Jacques Carlier,et al.  SAT versus UNSAT , 1993, Cliques, Coloring, and Satisfiability.

[6]  Steven Prestwich,et al.  Randomised Backtracking for Linear Pseudo-Boolean Constraint Problems , 2002 .

[7]  Edward A. Hirsch,et al.  UnitWalk: A new SAT solver that uses local search guided by unit clause elimination , 2005, Annals of Mathematics and Artificial Intelligence.

[8]  Andrew B. Kahng,et al.  Toward CAD-IP Reuse: The MARCO GSRC Bookshelf of Fundamental CAD Algorithms , 2002 .

[9]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[10]  Fahiem Bacchus,et al.  Enhancing Davis Putnam with extended binary clause reasoning , 2002, AAAI/IAAI.

[11]  Benjamin W. Wah,et al.  A discrete Lagrangian-based global-search method for solving satisfiability problems , 1996, Satisfiability Problem: Theory and Applications.

[12]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[13]  Philippe Chatalic,et al.  Multi-resolution on compressed sets of clauses , 2000, Proceedings 12th IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000.

[14]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[15]  Inês Lynce,et al.  Stochastic Systematic Search Algorithms for Satisfiability , 2001, Electron. Notes Discret. Math..

[16]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[17]  Lakhdar Sais,et al.  Recovering and Exploiting Structural Knowledge from CNF Formulas , 2002, CP.

[18]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[19]  Michael D. Ernst,et al.  Automatic SAT-Compilation of Planning Problems , 1997, IJCAI.

[20]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[21]  Joao Marques-Silva,et al.  GRASP-A new search algorithm for satisfiability , 1996, Proceedings of International Conference on Computer Aided Design.

[22]  Lei Zheng,et al.  Improving SAT Using 2SAT , 2002, ACSC.

[23]  Joao Marques-Silva,et al.  Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability , 2000, CP.

[24]  Stéphane Bressan,et al.  A SAT approach to query optimization in mediator systems , 2005, Annals of Mathematics and Artificial Intelligence.

[25]  Edward A. Hirsch,et al.  SAT Local Search Algorithms: Worst-Case Study , 2000, Journal of Automated Reasoning.

[26]  Allen Van Gelder,et al.  Persistent and Quasi-Persistent Lemmas in Propositional Model Elimination , 2004, Annals of Mathematics and Artificial Intelligence.

[27]  Philippe Chatalic,et al.  SatEx: A Web-based Framework for SAT Experimentation , 2001, Electron. Notes Discret. Math..

[28]  Oliver Kullmann Towards an adaptive density based branching rule for SAT solvers, using a database for mixed random , 2002 .

[29]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[30]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[31]  Inês Lynce,et al.  Efficient data structures for backtrack search SAT solvers , 2005, Annals of Mathematics and Artificial Intelligence.

[32]  Randal E. Bryant,et al.  Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[33]  E. Clarke,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[34]  Eugene Goldberg,et al.  BerkMin: A Fast and Robust Sat-Solver , 2002 .

[35]  Christos H. Papadimitriou,et al.  On the Greedy Algorithm for Satisfiability , 1992, Information Processing Letters.

[36]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[37]  Armando Tacchella,et al.  Benefits of Bounded Model Checking at an Industrial Setting , 2001, CAV.

[38]  Allen Van Gelder Autarky Pruning in Propositional Model Elimination Reduces Failure Redundancy , 1999 .

[39]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[40]  John N. Hooker,et al.  Needed: An Empirical Science of Algorithms , 1994, Oper. Res..

[41]  Hans van Maaren,et al.  Solving satisfiability problems using elliptic approximations - effective branching rules , 2000, Discret. Appl. Math..

[42]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[43]  Parosh Aziz Abdulla,et al.  Symbolic Reachability Analysis Based on SAT-Solvers , 2000, TACAS.

[44]  Edward A. Hirsch,et al.  New Worst-Case Upper Bounds for SAT , 2000, Journal of Automated Reasoning.

[45]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[46]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[47]  Chu Min Li,et al.  Integrating symmetry breaking into a DLL procedure , 2002 .

[48]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[49]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[50]  Allen Van Gelder,et al.  Satisfiability testing with more reasoning and less guessing , 1995, Cliques, Coloring, and Satisfiability.

[51]  Allen Van Gelder Extracting (Easily) Checkable Proofs from a Satisfiability Solver that Employs both Preorder and Postorder Resolution , 2002, ISAIM.

[52]  J. Freeman Improvements to propositional satisfiability search algorithms , 1995 .

[53]  Igor L. Markov,et al.  Solving difficult SAT instances in the presence of symmetry , 2002, Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324).

[54]  Hantao Zhang,et al.  An Efficient Algorithm for Unit Propagation , 1996 .

[55]  Henry Kautz,et al.  Pushing the envelope: planning , 1996 .

[56]  Chu Min Li,et al.  Integrating Equivalency Reasoning into Davis-Putnam Procedure , 2000, AAAI/IAAI.

[57]  Allen Van Gelder,et al.  Lemma and cut strategies for propositional model elimination , 2004, Annals of Mathematics and Artificial Intelligence.

[58]  E. A. Hirsch,et al.  UnitWalk: A New SAT Solver that Uses Local Search Guided by Unit Clause Elimination , 2005 .

[59]  Chu Min Li,et al.  A Constraint-Based Approach to Narrow Search Trees for Satisfiability , 1999, Inf. Process. Lett..

[60]  Geoff Sutcliffe,et al.  Evaluating general purpose automated theorem proving systems , 2001, Artif. Intell..

[61]  Allen Van Gelder Generalizations of Watched Literals for Backtracking Search , 2002, ISAIM.

[62]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..