Distributed localization and clustering using data correlation and the Occam's razor principle

We present a distributed algorithm for computing a combined solution to three problems in sensor networks: localization, clustering, and sensor suspension. Assuming that initially only a rough approximation of the sensor positions is known, we show how one can use sensor measurements to refine the set of possible sensor locations, to group the sensors into clusters with linearly correlated measurements, and to decide which sensors may suspend transmission without jeopardizing the consistency of the collected data. Our algorithm applies the “Occam's razor principle” by computing a “simplest” explanation for the data gathered from the network. We also present centralized algorithms, as well as efficient heuristics.

[1]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[2]  Andrey V. Savkin,et al.  Node Localization Using Mobile Robots in Delay-Tolerant Sensor Networks , 2005, IEEE Trans. Mob. Comput..

[3]  David Evans,et al.  Localization for mobile sensor networks , 2004, MobiCom '04.

[4]  Deborah Estrin,et al.  GPS-less low-cost outdoor localization for very small devices , 2000, IEEE Wirel. Commun..

[5]  Matt Welsh,et al.  MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking , 2005, LoCA.

[6]  A. Rahimi,et al.  Simultaneous localization, calibration, and tracking in an ad hoc sensor network , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[7]  Andreas Krause,et al.  Submodular Dictionary Selection for Sparse Representation , 2010, ICML.

[8]  Joseph A. Paradiso,et al.  Localizing a sensor network via collaborative processing of global stimuli , 2005, Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005..

[9]  Rahul Sukthankar,et al.  Distributed localization of networked cameras , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[10]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[11]  Jie Gao,et al.  Distributed localization using noisy distance and angle information , 2006, MobiHoc '06.

[12]  Peter I. Corke,et al.  Networked Robots: Flying Robot Navigation using a Sensor Net , 2003, ISRR.

[13]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[14]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[15]  Junshan Li,et al.  A Hybrid Simplification Algorithm for Large Scale Terrain , 2006, 2006 8th international Conference on Signal Processing.

[16]  Marc J. van Kreveld,et al.  Embedding rivers in polyhedral terrains , 2009, SCG '09.

[17]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[18]  Tarek F. Abdelzaher,et al.  Range-free localization schemes for large scale sensor networks , 2003, MobiCom '03.

[19]  Mani B. Srivastava,et al.  Dynamic fine-grained localization in Ad-Hoc networks of sensors , 2001, MobiCom '01.

[20]  Maarten Löffler,et al.  Smoothing Imprecise 1.5D Terrains , 2010, Int. J. Comput. Geom. Appl..

[21]  B. R. Badrinath,et al.  DV Based Positioning in Ad Hoc Networks , 2003, Telecommun. Syst..

[22]  Pavan K. Desikan,et al.  An efficient algorithm for terrain simplification , 1997, SODA '97.

[23]  Jian Tan,et al.  Localization for Anchoritic Sensor Networks , 2006, DCOSS.

[24]  Tian He,et al.  A high-accuracy, low-cost localization system for wireless sensor networks , 2005, SenSys '05.

[25]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[26]  B. R. Badrinath,et al.  Ad hoc positioning system (APS) using AOA , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[27]  Shouqian Sun,et al.  Texture Information Driven Triangle Mesh Simplification , 2005, Computer Graphics and Imaging.

[28]  Xenofon D. Koutsoukos,et al.  A Survey on Localization for Mobile Wireless Sensor Networks , 2009, MELT.

[29]  Mihail L. Sichitiu,et al.  Localization of wireless sensor networks with a mobile beacon , 2004, 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE Cat. No.04EX975).

[30]  Radhika Nagpal,et al.  Organizing a Global Coordinate System from Local Information on an Ad Hoc Sensor Network , 2003, IPSN.

[31]  R.L. Moses,et al.  Locating the nodes: cooperative localization in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[32]  Ted Lewis,et al.  Geometric permutations for convex sets , 1985, Discret. Math..

[33]  David G. Kirkpatrick,et al.  Right-Triangulated Irregular Networks , 2001, Algorithmica.

[34]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).