Robust maximum-likelihood estimation of multivariable dynamic systems

This paper examines the problem of estimating linear time-invariant state-space system models. In particular, it addresses the parametrization and numerical robustness concerns that arise in the multivariable case. These difficulties are well recognised in the literature, resulting (for example) in extensive study of subspace-based techniques, as well as recent interest in 'data driven' local co-ordinate approaches to gradient search solutions. The paper here proposes a different strategy that employs the expectation-maximisation (EM) technique. The consequence is an algorithm that is iterative, with associated likelihood values that are locally convergent to stationary points of the (Gaussian) likelihood function. Furthermore, theoretical and empirical evidence presented here establishes additional attractive properties such as numerical robustness, avoidance of difficult parametrization choices, the ability to naturally and easily estimate non-zero initial conditions, and moderate computational cost. Moreover, since the methods here are maximum-likelihood based, they have associated known and asymptotically optimal statistical properties.

[1]  Bo Wahlberg,et al.  On Weighting in State-Space Subspace System Identification , 1995 .

[2]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[3]  Graham C. Goodwin,et al.  Model Identification and Adaptive Control , 2001 .

[4]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[5]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[6]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[7]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[8]  Roberto Guidorzi,et al.  On the Use of Minimal Parametrizations in Multivariable Armax Identification , 1996 .

[9]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[10]  Manfred Deistler,et al.  Consistency and Relative Efficiency of Subspace Methods , 1994 .

[11]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[12]  Stephen J. Wright Modified Cholesky Factorizations in Interior-Point Algorithms for Linear Programming , 1999, SIAM J. Optim..

[13]  Anders Helmersson,et al.  Data driven local coordinates for multivariable linear systems and their application to system identification , 2004, Autom..

[14]  P. Caines Linear Stochastic Systems , 1988 .

[15]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[16]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[17]  Bernard Hanzon,et al.  On new parametrization methods for the estimation of linear state–space models , 2004 .

[18]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[19]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[20]  F. N. David,et al.  LINEAR STATISTICAL INFERENCE AND ITS APPLICATION , 1967 .

[21]  Xiao-Li Meng,et al.  On the global and componentwise rates of convergence of the EM algorithm , 1994 .

[22]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[23]  Lennart Ljung,et al.  Aspects and Experiences of User Choices in Subspace Identification Methods , 2003 .

[24]  Yves Rolain,et al.  Minimum variance bounds for overparameterized models , 1996, IEEE Trans. Autom. Control..

[25]  Roberto Guidorzi,et al.  Discussion: 'On the Use of Minimal Parametrisations in Multivariable ARMAX Identification' by R. P. Guidorzi , 1998, Eur. J. Control.

[26]  Robert J. Elliott,et al.  A martingale Kronecker lemma and parameter estimation for linear systems , 1998, IEEE Trans. Autom. Control..

[27]  Lennart Ljung,et al.  Version 5 of the System Identification Toolbox for use with MATLAB - with Object Orientation , 2000 .

[28]  Behnaam Aazhang,et al.  EM-Based Multiuser Detection in Fast Fading Multipath Environments , 2002, EURASIP J. Adv. Signal Process..

[29]  Graham C. Goodwin,et al.  Estimation with Missing Data , 1999 .

[30]  Fionn Murtagh,et al.  Image Processing and Data Analysis: Preface , 1998 .

[31]  J. R. Giles,et al.  Introduction to the Analysis of Normed Linear Spaces: List of symbols , 2000 .

[32]  R. A. Boyles On the Convergence of the EM Algorithm , 1983 .

[33]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[34]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[35]  A. Helmersson,et al.  A dynamic minimal parametrization of multivariable linear systems and its applications to optimization and system identification , 1999 .

[36]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[37]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[38]  S. Semmes An introduction to analysis on metric spaces , 1960 .

[39]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[40]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[41]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[42]  Alf Isaksson,et al.  Identification of ARX-models subject to missing data , 1993, IEEE Trans. Autom. Control..

[43]  Gene H. Golub,et al.  Matrix computations , 1983 .

[44]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[45]  E. Hannan,et al.  The Statistical Theory of Linear Systems. , 1990 .

[46]  Charalambos D. Charalambous,et al.  Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: the continuous-time case , 2000, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[47]  Michel Verhaegen,et al.  An efficient implementation of maximum likelihood identification of LTI state-space models by local gradient search , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..