Towards a System Theory for Model Set: Chain-Scattering Approach
暂无分享,去创建一个
[1] J. Norton,et al. Bounding Approaches to System Identification , 1996 .
[2] R. Redheffer. On a Certain Linear Fractional Transformation , 1960 .
[3] Bruce A. Francis,et al. Feedback Control Theory , 1992 .
[4] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .
[5] A. Packard. Gain scheduling via linear fractional transformations , 1994 .
[6] Carolyn L. Beck,et al. Model reduction of multidimensional and uncertain systems , 1994, IEEE Trans. Autom. Control..
[7] T. Georgiou,et al. Optimal robustness in the gap metric , 1990 .
[8] Henryk Wozniakowski,et al. Information-based complexity , 1987, Nature.
[9] P. Khargonekar,et al. Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty , 1985 .
[10] John C. Doyle. Analysis of Feedback Systems with Structured Uncertainty , 1982 .
[11] P. Dewilde,et al. Lossless chain scattering matrices and optimum linear prediction: The vector case , 1981 .
[12] G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .
[13] Kai Cieliebak,et al. Symplectic Geometry , 1992, New Spaces in Physics.
[14] R. Phillips,et al. On symplectic mappings of contraction operators , 1968 .
[15] Hidenori Kimura,et al. Reduction of model sets with inclusion , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[16] L. Ahlfors. Complex Analysis , 1979 .