Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy

Fast and precise positioning is a basic requirement for nanotechnology applications. Many scanning-probe microscopes (SPM) use a piezoelectric tube scanner for actuation with nanometer resolution in all three spatial directions. Due to the dynamics of the actuator, the imaging speed of the SPM is limited. By applying model-based open-loop control, the dynamic behavior of the scanner can be compensated, reducing the displacement error, topographical artifacts, modulation of the interaction force, and modulation of the relative tip-sample velocity. The open-loop controlled system enables imaging of up to 125-/spl mu/m-sized samples at a line scan rate of 122 Hz, which is about 15 times faster than the commercial system.

[1]  D. Croft,et al.  Vibration compensation for high speed scanning tunneling microscopy , 1999 .

[2]  G. Binnig,et al.  Single-tube three-dimensional scanner for scanning tunneling microscopy , 1986 .

[3]  K. Youcef-Toumi,et al.  Coupling in piezoelectric tube scanners used in scanning probe microscopes , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[4]  Harald Fuchs,et al.  Latex bead projection nanopatterns , 2002 .

[5]  Franz J. Giessibl,et al.  Atomic Force Microscopy-(7x7) Surface by Atomic Force Microscopy , 1995 .

[6]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[7]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[8]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[9]  T. Stolarski Modern Tribology Handbook , 2003 .

[10]  Harry Heinzelmann,et al.  Atomic force microscopy for the study of tribology and adhesion , 1989 .

[11]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[12]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[13]  P. Hansma,et al.  Atomic force microscopy , 1990, Nature.

[14]  Vladimir V. Tsukruk,et al.  Organic Molecular Films under Shear Forces: Fluid and Solid Langmuir Monolayers , 1996 .

[15]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[16]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[17]  David Keller,et al.  Scanning force microscopy at -25°C , 1993 .

[18]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[19]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[20]  Calvin F. Quate,et al.  High-speed, large-scale imaging with the atomic force microscope , 1991 .