Finiteness property of pairs of 2× 2 sign-matrices via real extremal polytope norms

[1]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[2]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[3]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[4]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[5]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[6]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[7]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[8]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[9]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[10]  Mau-Hsiang Shih,et al.  Simultaneous Schur stability , 1999 .

[11]  Nicola Guglielmi,et al.  On the asymptotic properties of a family of matrices , 2001 .

[12]  Nicola Guglielmi,et al.  On the zero-stability of variable stepsize multistep methods: the spectral radius approach , 2001, Numerische Mathematik.

[13]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[14]  Vincent D. Blondel,et al.  An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..

[15]  Nicola Guglielmi,et al.  Stability of one‐leg Θ‐methods for the variable coefficient pantograph equation on the quasi‐geometric mesh , 2003 .

[16]  Fabian Wirth,et al.  The generalized spectral radius is strictly increasing , 2005 .

[17]  V. Protasov The Geometric Approach for Computing the Joint Spectral Radius , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  Fabian R. Wirth,et al.  Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..

[19]  N. Guglielmi,et al.  Polytope norms and related algorithms for the computation of the joint spectral radius , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  V. Kozyakin A Dynamical Systems Construction of a Counterexample to the Finiteness Conjecture , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[21]  Y. Nesterov,et al.  On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .

[22]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[23]  Vincent D. Blondel,et al.  On the Complexity of Computing the Capacity of Codes That Avoid Forbidden Difference Patterns , 2006, IEEE Transactions on Information Theory.

[24]  Vincent D. Blondel,et al.  On the finiteness property for rational matrices , 2007 .

[25]  M. Zennaro,et al.  Balanced Complex Polytopes and Related Vector and Matrix Norms , 2007 .

[26]  Nicola Guglielmi,et al.  An algorithm for finding extremal polytope norms of matrix families , 2008 .

[27]  R. M. Jungers,et al.  Counterexamples to the Complex Polytope Extremality Conjecture , 2009, SIAM J. Matrix Anal. Appl..

[28]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .