Neuroscience-Inspired Artificial Intelligence

[1]  Razvan Pascanu,et al.  A simple neural network module for relational reasoning , 2017, NIPS.

[2]  Razvan Pascanu,et al.  Metacontrol for Adaptive Imagination-Based Optimization , 2017, ICLR.

[3]  Daan Wierstra,et al.  Recurrent Environment Simulators , 2017, ICLR.

[4]  Rafal Bogacz,et al.  An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity , 2017, Neural Computation.

[5]  David Amos,et al.  Generative Temporal Models with Memory , 2017, ArXiv.

[6]  M. A. MacIver,et al.  Neuroscience Needs Behavior: Correcting a Reductionist Bias , 2017, Neuron.

[7]  Kevin Waugh,et al.  DeepStack: Expert-level artificial intelligence in heads-up no-limit poker , 2017, Science.

[8]  T. Moore,et al.  Neural Mechanisms of Selective Visual Attention. , 2017, Annual review of psychology.

[9]  N. Daw,et al.  Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework , 2017, Annual review of psychology.

[10]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[11]  Zeb Kurth-Nelson,et al.  Learning to reinforcement learn , 2016, CogSci.

[12]  Joshua B. Tenenbaum,et al.  A Compositional Object-Based Approach to Learning Physical Dynamics , 2016, ICLR.

[13]  Misha Denil,et al.  Learning to Perform Physics Experiments via Deep Reinforcement Learning , 2016, ICLR.

[14]  Razvan Pascanu,et al.  Sim-to-Real Robot Learning from Pixels with Progressive Nets , 2016, CoRL.

[15]  Joel Z. Leibo,et al.  View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation , 2016, Current Biology.

[16]  Yoshua Bengio,et al.  Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation , 2016, Front. Comput. Neurosci..

[17]  Kevin Waugh,et al.  DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker , 2017, ArXiv.

[18]  Razvan Pascanu,et al.  Interaction Networks for Learning about Objects, Relations and Physics , 2016, NIPS.

[19]  Colin J. Akerman,et al.  Random synaptic feedback weights support error backpropagation for deep learning , 2016, Nature Communications.

[20]  Peter L. Bartlett,et al.  RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning , 2016, ArXiv.

[21]  Sergio Gomez Colmenarejo,et al.  Hybrid computing using a neural network with dynamic external memory , 2016, Nature.

[22]  Bernt Schiele,et al.  Learning What and Where to Draw , 2016, NIPS.

[23]  George Kurian,et al.  Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation , 2016, ArXiv.

[24]  Fabian Grabenhorst,et al.  A dynamic code for economic object valuation in prefrontal cortex neurons , 2016, Nature Communications.

[25]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[26]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[27]  Yasser Roudi,et al.  Ten Years of Grid Cells. , 2016, Annual review of neuroscience.

[28]  Zeb Kurth-Nelson,et al.  Fast Sequences of Non-spatial State Representations in Humans , 2016, Neuron.

[29]  Max Jaderberg,et al.  Unsupervised Learning of 3D Structure from Images , 2016, NIPS.

[30]  James L. McClelland,et al.  What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated , 2016, Trends in Cognitive Sciences.

[31]  Charles Blundell,et al.  Early Visual Concept Learning with Unsupervised Deep Learning , 2016, ArXiv.

[32]  Timothy E. J. Behrens,et al.  Organizing conceptual knowledge in humans with a gridlike code , 2016, Science.

[33]  Joel Z. Leibo,et al.  Model-Free Episodic Control , 2016, ArXiv.

[34]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[35]  Konrad P. Körding,et al.  Toward an Integration of Deep Learning and Neuroscience , 2016, bioRxiv.

[36]  Thomas Brox,et al.  Synthesizing the preferred inputs for neurons in neural networks via deep generator networks , 2016, NIPS.

[37]  Konrad Paul Kording,et al.  Could a Neuroscientist Understand a Microprocessor? , 2016, bioRxiv.

[38]  Daan Wierstra,et al.  One-shot Learning with Memory-Augmented Neural Networks , 2016, ArXiv.

[39]  D. Hassabis,et al.  Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network , 2016, Neuron.

[40]  Ha Hong,et al.  Explicit information for category-orthogonal object properties increases along the ventral stream , 2016, Nature Neuroscience.

[41]  Joshua B. Tenenbaum,et al.  Building machines that learn and think like people , 2016, Behavioral and Brain Sciences.

[42]  Geoffrey E. Hinton,et al.  Attend, Infer, Repeat: Fast Scene Understanding with Generative Models , 2016, NIPS.

[43]  Andrew S. Cassidy,et al.  Convolutional networks for fast, energy-efficient neuromorphic computing , 2016, Proceedings of the National Academy of Sciences.

[44]  Daan Wierstra,et al.  One-Shot Generalization in Deep Generative Models , 2016, ICML.

[45]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[46]  A. Redish,et al.  Vicarious trial and error , 2016, Nature Reviews Neuroscience.

[47]  Shie Mannor,et al.  Graying the black box: Understanding DQNs , 2016, ICML.

[48]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[49]  Seunghoon Hong,et al.  Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Tom Schaul,et al.  Prioritized Experience Replay , 2015, ICLR.

[51]  Joel Z. Leibo,et al.  How Important Is Weight Symmetry in Backpropagation? , 2015, AAAI.

[52]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[53]  Yuting Zhang,et al.  Deep Visual Analogy-Making , 2015, NIPS.

[54]  Amanda L. Loshbaugh,et al.  Labelling and optical erasure of synaptic memory traces in the motor cortex , 2015, Nature.

[55]  Leon A. Gatys,et al.  A Neural Algorithm of Artistic Style , 2015, ArXiv.

[56]  Honglak Lee,et al.  Action-Conditional Video Prediction using Deep Networks in Atari Games , 2015, NIPS.

[57]  Ryohei Yasuda,et al.  Biochemical Computation for Spine Structural Plasticity , 2015, Neuron.

[58]  D. Hassabis,et al.  Hippocampal place cells construct reward related sequences through unexplored space , 2015, eLife.

[59]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[60]  W. Gan,et al.  Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity , 2015, Nature.

[61]  Jason Weston,et al.  End-To-End Memory Networks , 2015, NIPS.

[62]  Dylan A. Simon,et al.  Model-based choices involve prospective neural activity , 2015, Nature Neuroscience.

[63]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[64]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[65]  Yoshua Bengio,et al.  Towards Biologically Plausible Deep Learning , 2015, ArXiv.

[66]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[67]  Koray Kavukcuoglu,et al.  Visual Attention , 2020, Computational Models for Cognitive Vision.

[68]  Jason Weston,et al.  Memory Networks , 2014, ICLR.

[69]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[70]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[71]  Samuel Gershman,et al.  Design Principles of the Hippocampal Cognitive Map , 2014, NIPS.

[72]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[73]  Alex Graves,et al.  Neural Turing Machines , 2014, ArXiv.

[74]  Wojciech Zaremba,et al.  Learning to Execute , 2014, ArXiv.

[75]  Alec Solway,et al.  Optimal Behavioral Hierarchy , 2014, PLoS Comput. Biol..

[76]  Etienne Koechlin,et al.  Foundations of human reasoning in the prefrontal cortex , 2014, Science.

[77]  Alex Graves,et al.  Recurrent Models of Visual Attention , 2014, NIPS.

[78]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[79]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[80]  Surya Ganguli,et al.  Exact solutions to the nonlinear dynamics of learning in deep linear neural networks , 2013, ICLR.

[81]  K. Deisseroth,et al.  Engineering Approaches to Illuminating Brain Structure and Dynamics , 2013, Neuron.

[82]  Jessica B. Hamrick,et al.  Simulation as an engine of physical scene understanding , 2013, Proceedings of the National Academy of Sciences.

[83]  P. Dayan,et al.  Goals and Habits in the Brain , 2013, Neuron.

[84]  N. Kriegeskorte,et al.  Author ' s personal copy Representational geometry : integrating cognition , computation , and the brain , 2013 .

[85]  Alexander G. Huth,et al.  Attention During Natural Vision Warps Semantic Representation Across the Human Brain , 2013, Nature Neuroscience.

[86]  Brad E. Pfeiffer,et al.  Hippocampal place cell sequences depict future paths to remembered goals , 2013, Nature.

[87]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[88]  R. N. Spreng,et al.  The Future of Memory: Remembering, Imagining, and the Brain , 2012, Neuron.

[89]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[90]  Rafal Bogacz,et al.  Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats , 2012, Front. Comput. Neurosci..

[91]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[92]  James L. McClelland,et al.  Generalization Through the Recurrent Interaction of Episodic Memories , 2012, Psychological review.

[93]  E. Koechlin,et al.  Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision-Making , 2012, PLoS biology.

[94]  Peter Dayan,et al.  Bonsai Trees in Your Head: How the Pavlovian System Sculpts Goal-Directed Choices by Pruning Decision Trees , 2012, PLoS Comput. Biol..

[95]  Demis Hassabis,et al.  Turing centenary: Is the brain a good model for machine intelligence? , 2012, Nature.

[96]  Simon M. Lucas,et al.  A Survey of Monte Carlo Tree Search Methods , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[97]  A. Baddeley Working memory: theories, models, and controversies. , 2012, Annual review of psychology.

[98]  Martin A. Riedmiller,et al.  Reinforcement learning in feedback control , 2011, Machine Learning.

[99]  Geoffrey E. Hinton,et al.  Learning to combine foveal glimpses with a third-order Boltzmann machine , 2010, NIPS.

[100]  Joshua B. Tenenbaum,et al.  Learning to Learn Causal Models , 2010, Cogn. Sci..

[101]  J. O’Neill,et al.  Play it again: reactivation of waking experience and memory , 2010, Trends in Neurosciences.

[102]  L. Frank,et al.  Rewarded Outcomes Enhance Reactivation of Experience in the Hippocampus , 2009, Neuron.

[103]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[104]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[105]  Demis Hassabis,et al.  The construction system of the brain , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[106]  Charles R. Gallistel,et al.  Memory and the Computational Brain: Why Cognitive Science will Transform Neuroscience , 2009 .

[107]  Leonidas A A Doumas,et al.  A theory of the discovery and predication of relational concepts. , 2008, Psychological review.

[108]  Peter Dayan,et al.  Hippocampal Contributions to Control: The Third Way , 2007, NIPS.

[109]  D. Hassabis,et al.  Deconstructing episodic memory with construction , 2007, Trends in Cognitive Sciences.

[110]  Elizabeth S. Spelke,et al.  Symbolic arithmetic knowledge without instruction , 2007, Nature.

[111]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  A. Dickinson,et al.  Planning for the future by western scrub-jays , 2007, Nature.

[113]  Adam Johnson,et al.  Cognitive Neural Ensembles in CA 3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007 .

[114]  Katherine D. Kinzler,et al.  Core knowledge. , 2007, Developmental science.

[115]  Shane Legg,et al.  A Collection of Definitions of Intelligence , 2007, AGI.

[116]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[117]  Matthew M Botvinick,et al.  Short-term memory for serial order: a recurrent neural network model. , 2006, Psychological review.

[118]  A. Nobre,et al.  Orienting Attention Based on Long-Term Memory Experience , 2006, Neuron.

[119]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[120]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[121]  P. Dayan,et al.  Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control , 2005, Nature Neuroscience.

[122]  L. Abbott,et al.  Cascade Models of Synaptically Stored Memories , 2005, Neuron.

[123]  K. Adolph Learning to learn in the development of action , 2005 .

[124]  John R Anderson,et al.  An integrated theory of the mind. , 2004, Psychological review.

[125]  A. Gopnik,et al.  Mechanisms of theory formation in young children , 2004, Trends in Cognitive Sciences.

[126]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[127]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[128]  Karl J. Friston,et al.  Temporal Difference Models and Reward-Related Learning in the Human Brain , 2003, Neuron.

[129]  James L. McClelland,et al.  The parallel distributed processing approach to semantic cognition , 2003, Nature Reviews Neuroscience.

[130]  E. Tulving Episodic memory: from mind to brain. , 2002, Annual review of psychology.

[131]  I. THE ATTENTION SYSTEM OF THE HUMAN BRAIN , 2002 .

[132]  Susan M. Barnett,et al.  When and where do we apply what we learn? A taxonomy for far transfer. , 2002, Psychological bulletin.

[133]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[134]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[135]  R. French Catastrophic forgetting in connectionist networks , 1999, Trends in Cognitive Sciences.

[136]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[137]  G. Marcus Rethinking Eliminative Connectionism , 1998, Cognitive Psychology.

[138]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[139]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[140]  L. Abbott,et al.  Invariant visual responses from attentional gain fields. , 1997, Journal of neurophysiology.

[141]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[142]  Michael I. Jordan Serial Order: A Parallel Distributed Processing Approach , 1997 .

[143]  K. Holyoak,et al.  The analogical mind. , 1997, The American psychologist.

[144]  B. McNaughton,et al.  Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience , 1996, Science.

[145]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[146]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[147]  Sebastian Thrun,et al.  Lifelong robot learning , 1993, Robotics Auton. Syst..

[148]  Charles A. Nelson,et al.  Basic and applied perspectives on learning, cognition, and development , 1995 .

[149]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[150]  From neuropsychology to mental structure By Tim Shallice. Cambridge University Press, Cambridge, MA, 1988, 462 pp , 1992, Neuropsychologia.

[151]  Richard S. Sutton,et al.  Dyna, an integrated architecture for learning, planning, and reacting , 1990, SGAR.

[152]  James L. McClelland,et al.  Learning and Applying Contextual Constraints in Sentence Comprehension , 1990, Artif. Intell..

[153]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[154]  Geoffrey E. Hinton,et al.  Distributed Representations , 1986, The Philosophy of Artificial Intelligence.

[155]  P. Goldman-Rakic Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. , 1990, Progress in brain research.

[156]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[157]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[158]  T. Sejnowski,et al.  Perspectives on cognitive neuroscience. , 1988, Science.

[159]  T. Shallice From Neuropsychology to Mental Structure: Converging Operations: Specific Syndromes and Evidence from Normal Subjects , 1988 .

[160]  J. Fodor,et al.  Connectionism and cognitive architecture: A critical analysis , 1988, Cognition.

[161]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[162]  James L. McClelland,et al.  James L. McClelland, David Rumelhart and the PDP Research Group, Parallel distributed processing: explorations in the microstructure of cognition . Vol. 1. Foundations . Vol. 2. Psychological and biological models . Cambridge MA: M.I.T. Press, 1987. , 1989, Journal of Child Language.

[163]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[164]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[165]  John Haugeland,et al.  Artificial intelligence - the very idea , 1987 .

[166]  E. Tulving How many memory systems are there , 1985 .

[167]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[168]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[169]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[170]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[171]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[172]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[173]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[174]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[175]  H. Harlow,et al.  The formation of learning sets. , 1949, Psychological review.

[176]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[177]  K. J. Craik,et al.  The nature of explanation , 1944 .

[178]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .