Three New Genome Assemblies Support a Rapid Radiation in Musa acuminata (Wild Banana)

Edible bananas result from interspecific hybridization between Musa acuminata and Musa balbisiana, as well as among subspecies in M. acuminata. Four particular M. acuminata subspecies have been proposed as the main contributors of edible bananas, all of which radiated in a short period of time in southeastern Asia. Clarifying the evolution of these lineages at a whole-genome scale is therefore an important step toward understanding the domestication and diversification of this crop. This study reports the de novo genome assembly and gene annotation of a representative genotype from three different subspecies of M. acuminata. These data are combined with the previously published genome of the fourth subspecies to investigate phylogenetic relationships and genome evolution. Analyses of shared and unique gene families reveal that the four subspecies are quite homogenous, with a core genome representing at least 50% of all genes and very few M. acuminata species-specific gene families. Multiple alignments indicate high sequence identity between homologous single copy-genes, supporting the close relationships of these lineages. Interestingly, phylogenomic analyses demonstrate high levels of gene tree discordance, due to both incomplete lineage sorting and introgression. This pattern suggests rapid radiation within Musa acuminata subspecies that occurred after the divergence with M. balbisiana. Introgression between M. a. ssp. malaccensis and M. a. ssp. burmannica was detected across a substantial portion of the genome, though multiple approaches to resolve the subspecies tree converged on the same topology. To support future evolutionary and functional analyses, we introduce the PanMusa database, which enables researchers to exploration of individual gene families and trees.

[1]  Alexandre Antonelli,et al.  Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics , 2019, PeerJ.

[2]  W. Kress,et al.  Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: Pushing the limits of genomic data. , 2018, Molecular phylogenetics and evolution.

[3]  James B. Pease,et al.  Encoding Data Using Biological Principles: The Multisample Variant Format for Phylogenomics and Population Genomics , 2018, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[4]  M. Hibbins,et al.  Population genetic tests for the direction and relative timing of introgression , 2018 .

[5]  Chao Zhang,et al.  ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees , 2018, BMC Bioinformatics.

[6]  D. Soltis,et al.  New prospects in the detection and comparative analysis of hybridization in the tree of life. , 2018, American journal of botany.

[7]  Ziheng Yang,et al.  Coalescent-Based Analyses of Genomic Sequence Data Provide a Robust Resolution of Phylogenetic Relationships among Major Groups of Gibbons , 2017, Molecular biology and evolution.

[8]  M. Sanderson,et al.  Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti , 2017, Proceedings of the National Academy of Sciences.

[9]  L. Moyle,et al.  Dissecting the basis of novel trait evolution in a radiation with widespread phylogenetic discordance , 2017, bioRxiv.

[10]  Tom Hazekamp,et al.  MGIS: managing banana (Musa spp.) genetic resources information and high-throughput genotyping data , 2017, Database J. Biol. Databases Curation.

[11]  D. Pot,et al.  A large set of 26 new reference transcriptomes dedicated to comparative population genomics in crops and wild relatives , 2017, Molecular ecology resources.

[12]  Frederik Coppens,et al.  PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization , 2017, bioRxiv.

[13]  R. Wing,et al.  The Rice Paradox: Multiple Origins but Single Domestication in Asian Rice , 2017, Molecular biology and evolution.

[14]  R. Swennen,et al.  Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity , 2017, Biodiversity and Conservation.

[15]  A. Kilian,et al.  DArT whole genome profiling provides insights on the evolution and taxonomy of edible Banana (Musa spp.) , 2016, Annals of botany.

[16]  J. Sese,et al.  Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism , 2016, Nature Genetics.

[17]  Burkhard Rost,et al.  MSAViewer: interactive JavaScript visualization of multiple sequence alignments , 2016, Bioinform..

[18]  B. Courtois,et al.  A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop , 2016, PloS one.

[19]  A. Hastie,et al.  Supplementary information Improvement of the banana “ Musa acuminata ” reference sequence using NGS data and semi-automated bioinformatics methods , 2022 .

[20]  Rony Swennen,et al.  Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia , 2016, The New phytologist.

[21]  Matthew W. Hahn,et al.  Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation , 2016, PLoS biology.

[22]  Matthew W. Hahn,et al.  Irrational exuberance for resolved species trees , 2016, Evolution; international journal of organic evolution.

[23]  W. Murphy,et al.  Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae) , 2016, Genome research.

[24]  Nordine El Hassouni,et al.  The South Green portal: A comprehensive resource for tropical and Mediterranean crop genomics , 2016 .

[25]  outh Green collaboratorsa The South Green portal : a comprehensive resource for tropical and Mediterranean crop genomics , 2016 .

[26]  Deren A. R. Eaton,et al.  Historical introgression among the American live oaks and the comparative nature of tests for introgression , 2015, Evolution; international journal of organic evolution.

[27]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[28]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[29]  Tandy J. Warnow,et al.  ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes , 2015, Bioinform..

[30]  August E. Woerner,et al.  Examining Phylogenetic Relationships Among Gibbon Genera Using Whole Genome Sequence Data Using an Approximate Bayesian Computation Approach , 2015, Genetics.

[31]  Xiaofang Jiang,et al.  Extensive introgression in a malaria vector species complex revealed by phylogenomics , 2015, Science.

[32]  Md. Shamsuzzoha Bayzid,et al.  Whole-genome analyses resolve early branches in the tree of life of modern birds , 2014, Science.

[33]  Jose Lugo-Martinez,et al.  Extensive Error in the Number of Genes Inferred from Draft Genome Assemblies , 2014, PLoS Comput. Biol..

[34]  P. Kück,et al.  FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies , 2014, Frontiers in Zoology.

[35]  Hanspeter Pfister,et al.  UpSet: Visualization of Intersecting Sets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[36]  August E. Woerner,et al.  Gibbon genome and the fast karyotype evolution of small apes , 2014 .

[37]  J. Mariette,et al.  jvenn: an interactive Venn diagram viewer , 2014, BMC Bioinformatics.

[38]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[39]  N. Khalid,et al.  “A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids” , 2013, BMC Genomics.

[40]  M. Häkkinen Reappraisal of sectional taxonomy in Musa (Musaceae) , 2013 .

[41]  Deren A. R. Eaton,et al.  Inferring Phylogeny and Introgression using RADseq Data: An Example from Flowering Plants (Pedicularis: Orobanchaceae) , 2013, Systematic biology.

[42]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[43]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[44]  R. Gibbs,et al.  Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology , 2012, PloS one.

[45]  Saravanaraj N. Ayyampalayam,et al.  The banana (Musa acuminata) genome and the evolution of monocotyledonous plants , 2012, Nature.

[46]  J. Richardson,et al.  West to east dispersal and subsequent rapid diversification of the mega‐diverse genus Begonia (Begoniaceae) in the Malesian archipelago , 2012 .

[47]  J. Doležel,et al.  A platform for efficient genotyping in Musa using microsatellite markers , 2011, AoB PLANTS.

[48]  David Reich,et al.  Testing for ancient admixture between closely related populations. , 2011, Molecular biology and evolution.

[49]  A. Risterucci,et al.  Multidisciplinary perspectives on banana (Musa spp.) domestication , 2011, Proceedings of the National Academy of Sciences.

[50]  Kenneth Lange,et al.  Enhancements to the ADMIXTURE algorithm for individual ancestry estimation , 2011, BMC Bioinformatics.

[51]  Michele Magrane,et al.  UniProt Knowledgebase: a hub of integrated protein data , 2011, Database J. Biol. Databases Curation.

[52]  Vincent Berry,et al.  Building species trees from larger parts of phylogenomic databases , 2011, Inf. Comput..

[53]  Christian M. Zmasek,et al.  GreenPhylDB v2.0: comparative and functional genomics in plants , 2010, Nucleic Acids Res..

[54]  J. Doležel,et al.  A multi gene sequence-based phylogeny of the Musaceae (banana) family , 2011, BMC Evolutionary Biology.

[55]  Remco R. Bouckaert,et al.  DensiTree: making sense of sets of phylogenetic trees , 2010, Bioinform..

[56]  Evgeny M. Zdobnov,et al.  The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell , 2010, Bioinform..

[57]  Philip L. F. Johnson,et al.  A Draft Sequence of the Neandertal Genome , 2010, Science.

[58]  P. Maret,et al.  Why Bananas Matter: An introduction to the history of banana domestication , 2009 .

[59]  O. Gascuel,et al.  Estimating maximum likelihood phylogenies with PhyML. , 2009, Methods in molecular biology.

[60]  Vincent Berry,et al.  PhySIC_IST: cleaning source trees to infer more informative supertrees , 2008, BMC Bioinformatics.

[61]  T. J. Robinson,et al.  Hemiplasy: a new term in the lexicon of phylogenetics. , 2008, Systematic biology.

[62]  Thomas Schiex,et al.  Genome Annotation in Plants and Fungi: EuGene as a Model Platform , 2008 .

[63]  B. Haas,et al.  Insights into the Musa genome: Syntenic relationships to rice and between Musa species , 2008, BMC Genomics.

[64]  Michele Morgante,et al.  Transposable elements and the plant pan-genomes. , 2007, Current opinion in plant biology.

[65]  W. Martin,et al.  The tree of one percent , 2006, Genome Biology.

[66]  Alan M. Moses,et al.  Widespread Discordance of Gene Trees with Species Tree in Drosophila: Evidence for Incomplete Lineage Sorting , 2006, PLoS genetics.

[67]  H. Tettelin,et al.  The microbial pan-genome. , 2005, Current opinion in genetics & development.

[68]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[70]  R. Jarret,et al.  RFLP-based phylogeny of Musa species in Papua New Guinea , 1992, Theoretical and Applied Genetics.

[71]  A. Risterucci,et al.  A high-density linkage map of Theobroma cacao L. , 2000, Theoretical and Applied Genetics.

[72]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[73]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[74]  W. Maddison Gene Trees in Species Trees , 1997 .

[75]  N. Simmonds,et al.  Numerical taxonomy of the wild bananas (Musa). , 1990, The New phytologist.

[76]  N. Simmonds The Evolution of the Bananas. , 1962 .

[77]  N. Simmonds Botanical Results of the Banana Collecting Expedition, 1954-5. , 1956 .

[78]  Taxonomy and Origins of Cultivated Bananas , 1956, Nature.

[79]  E. Cheesman Classification of the Bananas , 1948 .