Hierarchical trajectory refinement for a class of nonlinear systems

Trajectory generation for nonlinear control systems is an important and difficult problem. In this paper, we provide a constructive method for hierarchical trajectory refinement. The approach is based on the recent notion of @f-related control systems. Given a control affine system satisfying certain assumptions, we construct a @f-related control system of smaller dimension. Trajectories designed for the smaller, abstracted system are guaranteed, by construction, to be feasible for the original system. Constructive procedures are provided for refining trajectories from the coarser to the more detailed system.

[1]  J. Marsden,et al.  Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .

[2]  Paulo Tabuada,et al.  Abstractions of Hamiltonian control systems , 2003, Autom..

[3]  El-Ghazali Talbi,et al.  Real-time motion planning , 1991 .

[4]  George J. Pappas,et al.  Hierarchies of stabilizability preserving linear systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[5]  Paulo Tabuada,et al.  Quotients of Fully Nonlinear Control Systems , 2005, SIAM J. Control. Optim..

[6]  Calin Belta,et al.  Abstraction and control for Groups of robots , 2004, IEEE Transactions on Robotics.

[7]  Francesco Bullo,et al.  Low-Order Controllability and Kinematic Reductions for Affine Connection Control Systems , 2005, SIAM J. Control. Optim..

[8]  Kevin M. Lynch,et al.  Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems , 2001, IEEE Trans. Robotics Autom..

[9]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[10]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[11]  Gloria Alvarez,et al.  Controllability of poisson control systems with symmetries , 1989 .

[12]  George J. Pappas,et al.  Consistent abstractions of affine control systems , 2002, IEEE Trans. Autom. Control..

[13]  Richard M. Murray,et al.  Real Time Trajectory Generation for Differentially Flat Systems , 1996 .

[14]  R. Murray,et al.  Real‐time trajectory generation for differentially flat systems , 1998 .

[15]  A. Isidori Nonlinear Control Systems , 1985 .

[16]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[17]  Ali Jadbabaie,et al.  Aggressive maneuvering of a thrust vectored flying wing: a receding horizon approach , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[18]  S.S. Stankovic,et al.  Model abstraction and inclusion principle: a comparison , 2002, IEEE Trans. Autom. Control..

[19]  George J. Pappas,et al.  Bisimilar control affine systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[20]  Kevin A. Grasse,et al.  Admissibility of Trajectories for Control Systems Related by Smooth Mappings , 2003, Math. Control. Signals Syst..

[21]  Vijay R. Kumar,et al.  Optimal Motion Generation for Groups of Robots: A Geometric Approach , 2004 .

[22]  John R. Hauser,et al.  Trajectory morphing for nonlinear systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[23]  Paulo Tabuada,et al.  Bisimilar control affine systems , 2004, Syst. Control. Lett..

[24]  Philippe Martin,et al.  Differential flatness and defect: an overview , 1995 .

[25]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[26]  George J. Pappas,et al.  Hierarchically consistent control systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[27]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).