The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation

This work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. [2009]). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.

[1]  Michael A. Sutton,et al.  Error Assessment in Stereo-based Deformation Measurements , 2011 .

[2]  Dimitri Debruyne,et al.  Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part I Temporal and Spatial Uncertainty Quantification of Displacement Measurements , 2014 .

[3]  Fabrice Pierron,et al.  Effect of DIC Spatial Resolution, Noise and Interpolation Error on Identification Results with the VFM , 2015 .

[4]  Jean-José Orteu,et al.  Assessment of Digital Image Correlation Measurement Accuracy in the Ultimate Error Regime: Main Results of a Collaborative Benchmark , 2013 .

[5]  J. Tong,et al.  Statistical Analysis of the Effect of Intensity Pattern Noise on the Displacement Measurement Precision of Digital Image Correlation Using Self-correlated Images , 2007 .

[6]  Richard B. Lehoucq,et al.  PDE Constrained Optimization for Digital Image Correlation. , 2015 .

[7]  Christoph Schnörr,et al.  Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class , 1991, International Journal of Computer Vision.

[8]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[9]  Hubert W. Schreier,et al.  Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .

[10]  Yury Gogotsi,et al.  Elastic-plastic contact mechanics of indentations accounting for phase transformations , 2003 .

[11]  Hugh Alan Bruck,et al.  Quantitative Error Assessment in Pattern Matching: Effects of Intensity Pattern Noise, Interpolation, Strain and Image Contrast on Motion Measurements , 2009 .

[12]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[13]  M. Sutton,et al.  Systematic errors in digital image correlation due to undermatched subset shape functions , 2002 .

[14]  M. Grédiac,et al.  Assessment of Digital Image Correlation Measurement Errors: Methodology and Results , 2009 .

[15]  M. A. Sutton,et al.  Systematic errors in digital image correlation caused by intensity interpolation , 2000 .

[16]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[17]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[18]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[19]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[20]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[21]  Huimin Xie,et al.  Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation , 2010 .

[22]  Kazufumi Ito,et al.  Estimation of the convection coefficient in elliptic equations , 1997 .

[23]  Jacob D. Hochhalter,et al.  Increasing accuracy and precision of digital image correlation through pattern optimization , 2017 .

[24]  Sven Bossuyt,et al.  Quality assessment of speckle patterns for digital image correlation , 2006 .

[25]  William C. Sweatt,et al.  Camera System Resolution and its Influence on Digital Image Correlation , 2015 .

[26]  John Immerkær,et al.  Fast Noise Variance Estimation , 1996, Comput. Vis. Image Underst..