Solving hard industrial combinatorial problems with SAT

[1]  Joao Marques-Silva,et al.  Algorithms for Maximum Satisfiability using Unsatisfiable Cores , 2008, 2008 Design, Automation and Test in Europe.

[2]  Carsten Sinz,et al.  Problem-Sensitive Restart Heuristics for the DPLL Procedure , 2009, SAT.

[3]  Dominik Stoffel,et al.  Reasoning in Boolean Networks - Logic Synthesis and Verification Using Testing Techniques , 1997, Frontiers in electronic testing.

[4]  Armin Biere,et al.  Efficient CNF Simplification Based on Binary Implication Graphs , 2011, SAT.

[5]  Vasco M. Manquinho,et al.  On Using Cutting Planes in Pseudo-Boolean Optimization , 2006, J. Satisf. Boolean Model. Comput..

[6]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[7]  Peter J. Stuckey,et al.  Propagation via lazy clause generation , 2009, Constraints.

[8]  Rob A. Rutenbar,et al.  Satisfiability-based layout revisited: detailed routing of complex FPGAs via search-based Boolean SAT , 1999, FPGA '99.

[9]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[10]  Alan M. Frisch,et al.  Solving Non-Boolean Satisfiability Problems with Stochastic Local Search: A Comparison of Encodings , 2001, Journal of Automated Reasoning.

[11]  Jan-Georg Smaus,et al.  On Boolean Functions Encodable as a Single Linear Pseudo-Boolean Constraint , 2007, CPAIOR.

[12]  Joao Marques-Silva,et al.  Empirical Study of the Anatomy of Modern Sat Solvers , 2011, SAT.

[13]  Vasco M. Manquinho,et al.  Satisfiability-Based Algorithms for Boolean Optimization , 2004, Annals of Mathematics and Artificial Intelligence.

[14]  Masahiro Fujita,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, DAC '99.

[15]  Joao Marques-Silva,et al.  Combinational equivalence checking using satisfiability and recursive learning , 1999, Design, Automation and Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078).

[16]  Barry O'Sullivan,et al.  Finding Diverse and Similar Solutions in Constraint Programming , 2005, AAAI.

[17]  Pierre Marquis,et al.  Some Computational Aspects of distance-sat , 2006, Journal of Automated Reasoning.

[18]  S. Malik,et al.  Solving the Minimum-Cost Satisfiability Problem Using SAT Based Branch-and-Bound Search , 2006, 2006 IEEE/ACM International Conference on Computer Aided Design.

[19]  Ian P. Gent,et al.  Generalised arc consistency for the AllDifferent constraint: An empirical survey , 2008, Artif. Intell..

[20]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[21]  Allen Van Gelder Generalized Conflict-Clause Strengthening for Satisfiability Solvers , 2011, SAT.

[22]  Pascal Van Hentenryck,et al.  A simulated annealing approach to the traveling tournament problem , 2006, J. Sched..

[23]  K. Sakallah,et al.  Generic ILP versus specialized 0-1 ILP: an update , 2002, ICCAD 2002.

[24]  Tracy Larrabee,et al.  Test pattern generation using Boolean satisfiability , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[25]  Adnan Darwiche,et al.  On Modern Clause-Learning Satisfiability Solvers , 2010, Journal of Automated Reasoning.

[26]  Gilles Audemard,et al.  Predicting Learnt Clauses Quality in Modern SAT Solvers , 2009, IJCAI.

[27]  G. Hommel,et al.  Improvements of General Multiple Test Procedures for Redundant Systems of Hypotheses , 1988 .

[28]  Albert Oliveras,et al.  A New Look at BDDs for Pseudo-Boolean Constraints , 2012, J. Artif. Intell. Res..

[29]  Miyuki Koshimura,et al.  QMaxSAT: A Partial Max-SAT Solver , 2012, J. Satisf. Boolean Model. Comput..

[30]  João P. Silva Algebraic Simplification Techniques for Propositional Satisfiability , 2000 .

[31]  Panagiotis Manolios,et al.  Pseudo-Boolean Solving by incremental translation to SAT , 2011, 2011 Formal Methods in Computer-Aided Design (FMCAD).

[32]  Michael A. Trick A Schedule-Then-Break Approach to Sports Timetabling , 2000, PATAT.

[33]  Peter J. Stuckey,et al.  Why Cumulative Decomposition Is Not as Bad as It Sounds , 2009, CP.

[34]  Vasco M. Manquinho,et al.  Algorithms for Weighted Boolean Optimization , 2009, SAT.

[35]  Lawrence Ryan Efficient algorithms for clause-learning SAT solvers , 2004 .

[36]  Albert Oliveras,et al.  MiniMaxSAT: An Efficient Weighted Max-SAT solver , 2008, J. Artif. Intell. Res..

[37]  Edward P. K. Tsang,et al.  Towards a practical engineering tool for rostering , 2007, Ann. Oper. Res..

[38]  Guillermo Durán,et al.  Scheduling the Chilean Soccer League by Integer Programming , 2007, Interfaces.

[39]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[40]  Daniel Kroening,et al.  A Survey of Automated Techniques for Formal Software Verification , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[41]  Robert Sedgewick,et al.  Implementing Quicksort programs , 1978, CACM.

[42]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[43]  Federico Della Croce,et al.  Scheduling the Italian Football League: an ILP-based approach , 2006, Comput. Oper. Res..

[44]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[45]  Michael Codish,et al.  Pairwise Cardinality Networks , 2010, LPAR.

[46]  Kenneth L. McMillan,et al.  Symbolic model checking: an approach to the state explosion problem , 1992 .

[47]  Jan A. M. Schreuder,et al.  Combinatorial aspects of construction of competition Dutch Professional Football Leagues , 1992, Discret. Appl. Math..

[48]  Armin Biere,et al.  Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.

[49]  Koen Claessen,et al.  SAT-Based Verification without State Space Traversal , 2000, FMCAD.

[50]  Maria Luisa Bonet,et al.  On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems , 2000, SIAM J. Comput..

[51]  David Zuckerman,et al.  Optimal speedup of Las Vegas algorithms , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[52]  Jean-Charles Régin The Symmetric Alldiff Constraint , 1999, IJCAI.

[53]  Paul C. Gilmore,et al.  A Proof Method for Quantification Theory: Its Justification and Realization , 1960, IBM J. Res. Dev..

[54]  Olivier Roussel,et al.  A Translation of Pseudo Boolean Constraints to SAT , 2006, J. Satisf. Boolean Model. Comput..

[55]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[56]  Toby Walsh,et al.  Circuit Complexity and Decompositions of Global Constraints , 2009, IJCAI.

[57]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[58]  Willem Jan van Hoeve,et al.  The alldifferent Constraint: A Survey , 2001, ArXiv.

[59]  Armin Biere,et al.  Inprocessing Rules , 2012, IJCAR.

[60]  Daniel Le Berre,et al.  The Sat4j library, release 2.2 , 2010, J. Satisf. Boolean Model. Comput..

[61]  Tevfik Bultan,et al.  Construction of Efficient BDDs for Bounded Arithmetic Constraints , 2003, TACAS.

[62]  Mattias Grönkvist A Constraint Programming Model for Tail Assignment , 2004, CPAIOR.

[63]  Niraj K. Jha,et al.  Testing of Digital Systems , 2003 .

[64]  Peter J. Stuckey,et al.  Conflict Directed Lazy Decomposition , 2012, CP.

[65]  Inês Lynce,et al.  Comparing SAT preprocessing techniques , 2002 .

[66]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[67]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[68]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[69]  C. A. J. van Eijk,et al.  Sequential equivalence checking without state space traversal , 1998, DATE.

[70]  Michael A. Trick,et al.  Round robin scheduling - a survey , 2008, Eur. J. Oper. Res..

[71]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[72]  Shuzo Yajima,et al.  On the Size of Ordered Binary Decision Diagrams Representing Threshold Functions , 1994, ISAAC.

[73]  Kwang-Ting Cheng,et al.  Sequential logic optimization by redundancy addition and removal , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[74]  Jin-Kao Hao,et al.  Solving the Sports League Scheduling Problem with Tabu Search , 2000, Local Search for Planning and Scheduling.

[75]  Philippe Refalo,et al.  Impact-Based Search Strategies for Constraint Programming , 2004, CP.

[76]  Christian Schulte,et al.  Views and Iterators for Generic Constraint Implementations , 2005, CSCLP.

[77]  Jean-Charles Régin Minimization of the number of breaks in sports scheduling problems using constraint programming , 1998, Constraint Programming and Large Scale Discrete Optimization.

[78]  Sandeep K. Gupta,et al.  A satisfiability-based test generator for path delay faults in combinational circuits , 1996, DAC '96.

[79]  João P. Silva The Impact of Branching Heuristics in Propositional Satisfiability Algorithms , 1999 .

[80]  Albert Oliveras,et al.  Cardinality Networks and Their Applications , 2009, SAT.

[81]  Ronen I. Brafman,et al.  A simplifier for propositional formulas with many binary clauses , 2001, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[82]  Robert J Willis,et al.  Scheduling the Australian State Cricket Season Using Simulated Annealing , 1994 .

[83]  Henry A. Kautz,et al.  Understanding the power of clause learning , 2003, IJCAI 2003.

[84]  Malay K. Ganai,et al.  Robust Boolean reasoning for equivalence checking and functional property verification , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[85]  Jinbo Huang,et al.  The Effect of Restarts on the Efficiency of Clause Learning , 2007, IJCAI.

[86]  Armin Biere,et al.  Minimizing Learned Clauses , 2009, SAT.

[87]  Olivier Roussel,et al.  New Encodings of Pseudo-Boolean Constraints into CNF , 2009, SAT.

[88]  Predrag Janicic,et al.  Instance-Based Selection of Policies for SAT Solvers , 2009, SAT.

[89]  Armin Biere,et al.  Blocked Clause Elimination for QBF , 2011, CADE.

[90]  Joao Marques-Silva,et al.  Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability , 2000, CP.

[91]  Albert Oliveras,et al.  The Barcelogic SMT Solver , 2008, CAV.

[92]  Martin Henz,et al.  Global constraints for round robin tournament scheduling , 2004, Eur. J. Oper. Res..

[93]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[94]  Cesare Tinelli,et al.  Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.

[95]  Risto Miikkulainen,et al.  Latent class models for algorithm portfolio methods , 2010, AAAI 2010.

[96]  Eugene Goldberg,et al.  BerkMin: A Fast and Robust Sat-Solver , 2002 .

[97]  Joost P. Warners,et al.  A Linear-Time Transformation of Linear Inequalities into Conjunctive Normal Form , 1998, Inf. Process. Lett..

[98]  Jean-Charles Régin,et al.  A Filtering Algorithm for Constraints of Difference in CSPs , 1994, AAAI.

[99]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[100]  Maria Luisa Bonet,et al.  Approximating Subtree Distances Between Phylogenies , 2006, J. Comput. Biol..

[101]  Armin Biere Adaptive Restart Strategies for Conflict Driven SAT Solvers , 2008, SAT.

[102]  Vasco M. Manquinho,et al.  Parallel Search for Boolean Optimization , 2011 .

[103]  Yakov Novikov Local search for Boolean relations on the basis of unit propagation , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[104]  G. Katsirelos Nogood Processing in CSPs , 2008 .

[105]  Olivier Bailleux,et al.  Efficient CNF Encoding of Boolean Cardinality Constraints , 2003, CP.