Industrial and Project Presentations

Conventional Virtual Reality (VR) is already being used in the design process for styling reviews on a daily basis, but until now only object shape can be assessed in a meaningful way, and neither the look and feel, nor the quality of surface materials can be adequately reproduced. Therefore, most interior design decisions in the automotive industry are still performed on expensive real prototypes. Apart from being costly and wasteful, this practice also significantly increases the time to market of the overall end products. The RealReflect project is an endeavor to increase the realism of VR technology to levels where it can be used for meaningful qualitative reviews of real objects. The technology developed in the project covers all stages of an advanced image synthesis process, ranging from the acquisition and further processing of reflectance data over texture synthesis and compression of the measurement data to high quality light simulations and real-time image-based rendering. The resulting improved quality especially provides a considerable benefit to those VR users groups such as the automotive industry or architecture who routinely have to make important design decisions about object appearance long before the actual product is first assembled. In this presentation, we will provide details both on the project’s goals and the results that were achieved by the various participants – representing industry as well as research institutes – of the RealReflect project already.

[1]  Ian Ashdown,et al.  Near-Field Photometry: Measuring and Modeling Complex 3-D Light Sources , 1995, SIGGRAPH 1995.

[2]  Peter Lindstrom,et al.  Out-of-core construction and visualization of multiresolution surfaces , 2003, I3D '03.

[3]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[4]  Philipp Slusallek,et al.  Interactive Global Illumination in Complex and Highly Occluded Environments , 2003, Rendering Techniques.

[5]  Martin Isenburg,et al.  Large mesh simplification using processing sequences , 2003, IEEE Visualization, 2003. VIS 2003..

[6]  William V. Baxter,et al.  GigaWalk: Interactive Walkthrough of Complex Environments , 2002, Rendering Techniques.

[7]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[8]  C. Benjamin Wooley,et al.  Source modeling for illumination design , 1997, Optics & Photonics.

[9]  Thomas A. Funkhouser,et al.  Database Management for Interactive Display of Large Architectural Models , 1996, Graphics Interface.

[10]  Gavin S. P. Miller,et al.  Lazy Decompression of Surface Light Fields for Precomputed Global Illumination , 1998, Rendering Techniques.

[11]  Reinhard Klein,et al.  Efficient NURBS Rendering using View-Dependent LOD and Normal Maps , 2003, WSCG.

[12]  Renato Pajarola,et al.  Out-Of-Core Algorithms for Scientific Visualization and Computer Graphics , 2002 .

[13]  Michael J. Muuss Towards real-time ray-tracing of combinatorial solid geometric models , 1995 .

[14]  Dinesh Manocha,et al.  Accelerated walkthrough of large spline models , 1997, SI3D.

[15]  Anselmo Lastra,et al.  Efficient rendering of spatial bi-directional reflectance distribution functions , 2002, HWWS '02.

[16]  Henning Biermann,et al.  Texture and Shape Synthesis on Surfaces , 2001, Rendering Techniques.

[17]  Reinhard Klein,et al.  Preserving Realism in real-time Rendering of Bidirectional Texture Functions , 2003 .

[18]  David Salesin,et al.  Surface light fields for 3D photography , 2000, SIGGRAPH.

[19]  Gavin S. P. Miller,et al.  Hierarchical Z-buffer visibility , 1993, SIGGRAPH.

[20]  Michael Goesele,et al.  Image-Based Measurement of Light Sources With Correct Filtering , 2001 .

[21]  Marc Levoy,et al.  Texture synthesis over arbitrary manifold surfaces , 2001, SIGGRAPH.

[22]  Michael Wimmer,et al.  Delivering Interactivity to Complex Tone Mapping Operators , 2003, Rendering Techniques.

[23]  Holger Mönch,et al.  P‐81: Source Imaging Goniometer Method of Light Source Characterization for Accurate Projection System Design , 2000 .

[24]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[25]  Michael Kass,et al.  Error-bounded antialiased rendering of complex environments , 1994, SIGGRAPH.

[26]  Hans-Peter Seidel,et al.  Interactive Global Illumination using Selective Photon Tracing , 2002, Rendering Techniques.

[27]  I. Ashdown,et al.  Near-Field Photometry: A New Approach , 1993 .

[28]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[29]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[30]  R. Klein,et al.  High-Quality Simplification with Generalized Pair Contractions , 2003 .

[31]  Jan Kautz,et al.  Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics , 2002, Rendering Techniques.

[32]  Philipp Slusallek,et al.  A Scalable Approach to Interactive Global Illumination , 2003, Comput. Graph. Forum.

[33]  Per H. Christensen,et al.  A practical guide to global illumination using photon mapping , 2000, SIGGRAPH 2000.

[34]  Hans-Peter Seidel,et al.  Perceptually Guided Corrective Splatting , 2001, Comput. Graph. Forum.

[35]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[36]  Karol Myszkowski,et al.  Adaptive Logarithmic Mapping For Displaying High Contrast Scenes , 2003, Comput. Graph. Forum.

[37]  Reinhard Klein,et al.  Compression and Real-Time Rendering of Measured BTFs Using Local PCA , 2003, VMV.

[38]  Hans-Peter Seidel,et al.  Planned Sampling of Spatially Varying BRDFs , 2003, Comput. Graph. Forum.

[39]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[40]  Kwan-Liu Ma,et al.  Out-of-Core Streamline Visualization on Large Unstructured Meshes , 1997, IEEE Trans. Vis. Comput. Graph..

[41]  Reinhard Klein,et al.  Fat borders: gap filling for efficient view-dependent LOD NURBS rendering , 2004, Comput. Graph..

[42]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[43]  Daniel G. Aliaga,et al.  MMR: an interactive massive model rendering system using geometric and image-based acceleration , 1999, SI3D.

[44]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[45]  Katsushi Ikeuchi,et al.  Appearance Based Object Modeling using Texture Database: Acquisition Compression and Rendering , 2002, Rendering Techniques.

[46]  Greg Turk,et al.  Texture synthesis on surfaces , 2001, SIGGRAPH.

[47]  B. G. Prakash,et al.  Geometry based triangulation of multiple trimmed NURBS surfaces , 2001, Comput. Aided Des..

[48]  Reinhard Klein,et al.  Automatic texture atlas generation from trimmed NURBS models , 2003, Comput. Graph. Forum.

[49]  Hans-Peter Seidel,et al.  Efficient Cloth Modeling and Rendering , 2001, Rendering Techniques.

[50]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[51]  Peter-Pike J. Sloan,et al.  Interactive ray tracing , 2005, SIGGRAPH Courses.

[52]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[53]  Reinhard Klein,et al.  Fast and memory efficient view-dependent trimmed NURBS rendering , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[54]  Werner Purgathofer,et al.  Tone Reproduction and Physically Based Spectral Rendering , 2002, Eurographics.

[55]  Leif Kobbelt,et al.  A Stream Algorithm for the Decimation of Massive Meshes , 2003, Graphics Interface.

[56]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[57]  Wei-Chao Chen,et al.  Light field mapping: efficient representation and hardware rendering of surface light fields , 2002, SIGGRAPH.

[58]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[59]  Frederick P. Brooks,et al.  Towards image realism with interactive update rates in complex virtual building environments , 1990, I3D '90.

[60]  Baining Guo,et al.  Synthesis of bidirectional texture functions on arbitrary surfaces , 2002, SIGGRAPH.

[61]  Donald P. Greenberg,et al.  Interactive global illumination in dynamic scenes , 2002, SIGGRAPH.

[62]  Carlo H. Séquin,et al.  Visibility preprocessing for interactive walkthroughs , 1991, SIGGRAPH.

[63]  Prasun Choudhury Completely Adaptive Simplification of Massive Meshes , 2002 .

[64]  Dinesh Manocha,et al.  Out-of-Core Rendering of Massive Geometric Datasets , 2002, IEEE Visualization.

[65]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[66]  Hans-Peter Seidel,et al.  Accurate light source acquisition and rendering , 2003, SIGGRAPH 2003.

[67]  Ares Lagae,et al.  Interactive Rendering with Bidirectional Texture Functions , 2003, Comput. Graph. Forum.

[68]  George Drettakis,et al.  Interactive Rendering using the Render Cache , 1999, Rendering Techniques.

[69]  M. Haindl,et al.  A Discrete Mixtures Colour Texture Model , 2002 .

[70]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[71]  Mel Siegel,et al.  General near-zone light source model and its application to computer-automated reflector design , 1996 .

[72]  Cláudio T. Silva,et al.  Efficient Conservative Visibility Culling Using the Prioritized-Layered Projection Algorithm , 2001, IEEE Trans. Vis. Comput. Graph..

[73]  Ralf Sarlette,et al.  Efficient and Realistic Visualization of Cloth , 2003, Rendering Techniques.

[74]  Michal Haindl,et al.  A multiscale colour texture model , 2002, Object recognition supported by user interaction for service robots.

[75]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[76]  Hans-Peter Seidel,et al.  Towards interactive bump mapping with anisotropic shift-variant BRDFs , 2000, Workshop on Graphics Hardware.

[77]  David P. Luebke,et al.  A Developer's Survey of Polygonal Simplification Algorithms , 2001, IEEE Computer Graphics and Applications.