An educational approach to the internal model principle for periodic signals

This article presents an educational approach to resonant control and repet- itive control, which are Internal Model Principle-based control techniques speci cally de- signed for the tracking/rejection of periodic signals. The analytical formulation is com- pleted by a set of simulations and physical experiments on a mechatronic educational plant integrated in a virtual/remote laboratory. The laboratory features are oriented to realize the limited performance of classic PID control to reject non-constant disturbances and, at the same time, to show the effectiveness of the Internal Model Principle for the rejection of periodic disturbances by means of resonators and repetitive control. Assess- ment based on students' perception reveals it as a useful distance learning tool. The laboratory is integrated in Automatl@bs, a Spanish interuniversity network of web-based laboratories devoted to distance learning of control engineering.

[1]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[2]  Oscar Reinoso,et al.  Docencia en Automática: Aplicación de las TIC a la realización de actividades prácticas a través de Internet , 2010 .

[3]  P. Khosla,et al.  Harmonic generation in adaptive feedforward cancellation schemes , 1994, IEEE Trans. Autom. Control..

[4]  Benjamin C. Kuo,et al.  Digital Control Systems , 1977 .

[5]  H. Ishioka,et al.  Compensation for repeatable tracking errors in hard drives using discrete-time repetitive controllers , 2001 .

[6]  Nan Li,et al.  A Design Method of Simple Multi-Period Repetitive Controllers for Time-Delay Plants , 2008, 2008 3rd International Conference on Innovative Computing Information and Control.

[7]  Ronald Azuma,et al.  Recent Advances in Augmented Reality , 2001, IEEE Computer Graphics and Applications.

[8]  W. Messner,et al.  Design of adaptive feedforward controllers using internal model equivalence , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[9]  Stephen J. Ludwick,et al.  A loop shaping perspective for tuning controllers with adaptive feedforward cancellation , 2005 .

[10]  Robert Grino,et al.  Adaptive Feed-Forward Cancellation Control of a Full-Bridge DC-AC Voltage Inverter , 2008 .

[11]  Masayoshi Tomizuka,et al.  Zero Phase Error Tracking Algorithm for Digital Control , 1987 .

[12]  Denis Gillet,et al.  A Systematic Two-Layer Approach to Develop Web-Based Experimentation Environments for Control Engineering Education , 2008, Intell. Autom. Soft Comput..

[13]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[14]  H.A. Grundling,et al.  Comparison of discrete control techniques for UPS applications , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[15]  Fernando Morilla,et al.  Developing and Implementing Virtual and Remote Labs for Control Education: The UNED pilot experience , 2008 .

[16]  Michio Nakano,et al.  High Accuracy Control of a Proton Synchrotron Magnet Power Supply , 1981 .

[17]  Denis Gillet,et al.  Web-Enabled Remote Scientific Environments , 2009, Computing in Science & Engineering.

[18]  Takamasa Hori,et al.  Suppression control method for torque vibration of brushless DC motor utilizing repetitive control with Fourier transform , 2000, 6th International Workshop on Advanced Motion Control. Proceedings (Cat. No.00TH8494).

[19]  Danwei Wang,et al.  Digital repetitive learning controller for three-phase CVCF PWM inverter , 2001, IEEE Trans. Ind. Electron..

[20]  Mikael Norrlöf,et al.  An adaptive iterative learning control algorithm with experiments on an industrial robot , 2002, IEEE Trans. Robotics Autom..

[21]  Ramon Costa-Castelló,et al.  Demonstration of the internal model principle by digital repetitive control of an educational laboratory plant , 2005, IEEE Transactions on Education.

[22]  Hakan Elmali,et al.  Analysis and Design of Delayed Resonator in Discrete Domain , 2000 .

[23]  B. Bhikkaji,et al.  Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning , 2008, IEEE/ASME Transactions on Mechatronics.

[24]  Manuel Berenguel,et al.  Entornos de experimentacin para la Enseanza de Conceptos Bsicos de Modelado y Control , 2010 .

[25]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[26]  Marina Valles,et al.  Integración de dispositivos físicos en un laboratorio remoto de control mediante diferentes plataformas, Labview, Matlab y C/C++ , 2010 .

[27]  Ramon Costa-Castelló,et al.  High-Performance Control of a Single-Phase Shunt Active Filter , 2009, IEEE Transactions on Control Systems Technology.

[28]  Ramon Costa-Castelló,et al.  Stability analysis of digital repetitive control systems under time-varying sampling period , 2011 .

[29]  Tsu-Chin Tsao,et al.  Robust performance control of electrohydraulic actuators for electronic cam motion generation , 2000, IEEE Trans. Control. Syst. Technol..

[30]  Yutaka Yamamoto,et al.  Learning Control and Related Problems in Infinite-Dimensional Systems , 1993 .