Multivalued Robust Tracking Control of Lagrange Systems: Continuous and Discrete-Time Algorithms

The robust trajectory tracking of fully actuated Lagrange systems is studied. Exogenous perturbations as well as parameter uncertainties are taken into account. A family of set-valued passivity-based controllers is proposed, including first-order sliding-mode schemes. The existence of solutions and the stability of the closed-loop system are established in continuous time. An implicit discretization approach is proposed and the well posedness and the stability of the closed-loop system are studied. Numerical simulations illustrate the effectiveness of the proposed discrete-time controller.

[1]  Jérôme Bastien,et al.  NUMERICAL PRECISION FOR DIFFERENTIAL INCLUSIONS WITH UNIQUENESS , 2002 .

[2]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[3]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[4]  Arie Levant,et al.  On fixed and finite time stability in sliding mode control , 2013, 52nd IEEE Conference on Decision and Control.

[5]  Daniel Goeleven,et al.  Variational and Hemivariational Inequalities : Theory, Methods and Applications , 2003 .

[6]  Mark W. Spong,et al.  Comments on "Adaptive manipulator control: a case study" by J. Slotine and W. Li , 1990 .

[7]  Wilson J. Rugh,et al.  Linear system theory (2nd ed.) , 1996 .

[8]  Jean-Jacques E. Slotine,et al.  Tracking control of nonlinear systems using sliding surfaces , 1983 .

[9]  Félix A. Miranda-Villatoro,et al.  Robust Output Regulation of Strongly Passive Linear Systems With Multivalued Maximally Monotone Controls , 2014, IEEE Transactions on Automatic Control.

[10]  Hao-Chi Chang,et al.  Sliding mode control on electro-mechanical systems , 1999 .

[11]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[12]  P. Olver Nonlinear Systems , 2013 .

[13]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[14]  Bernard Brogliato,et al.  On output regulation in state-constrained systems: An application to polyhedral case , 2014 .

[15]  Franck Plestan,et al.  Experimental Comparisons Between Implicit and Explicit Implementations of Discrete-Time Sliding Mode Controllers: Toward Input and Output Chattering Suppression , 2015, IEEE Transactions on Control Systems Technology.

[16]  Bernard Brogliato,et al.  Multivalued robust tracking control of fully actuated Lagrange systems: Continuous and discrete–time algorithms , 2017 .

[17]  Franck Plestan,et al.  Experimental results on implicit and explicit time-discretization of equivalent-control-based sliding-mode control , 2016 .

[18]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[19]  Mark W. Spong,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[20]  Xinghuo Yu,et al.  Euler's Discretization of Single Input Sliding-Mode Control Systems , 2007, IEEE Transactions on Automatic Control.

[21]  Vincent Acary,et al.  Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems , 2010, Syst. Control. Lett..

[22]  F. M. Callier,et al.  Dissipative Systems Analysis and Control: Theory and Applications (2nd Edition)-[Book review; B. Brogliato, R. Lozano, B. Maschke] , 2007, IEEE Transactions on Automatic Control.

[23]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[24]  P. Lancaster,et al.  The theory of matrices : with applications , 1985 .

[25]  Vincent Acary,et al.  Chattering-Free Digital Sliding-Mode Control With State Observer and Disturbance Rejection , 2012, IEEE Transactions on Automatic Control.

[26]  Andrey Polyakov,et al.  Globally stable implicit Euler time-discretization of a nonlinear single-input sliding-mode control system , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[27]  Samir Adly,et al.  Implicit Euler Time-Discretization of a Class of Lagrangian Systems with Set-Valued Robust Controller , 2016 .

[28]  Jean-Jacques E. Slotine,et al.  Adaptive manipulator control: A case study , 1988 .

[29]  Rob Dekkers,et al.  Control of Robot Manipulators in Joint Space , 2005 .

[30]  B. Brogliato,et al.  Well-posedness, stability and invariance results for a class of multivalued Lur'e dynamical systems , 2011 .

[31]  Khalid Addi,et al.  A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems: applications in electronics , 2011, Math. Program..

[32]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[33]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[34]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[35]  Vincent Acary,et al.  Lyapunov Stability and Performance Analysis of the Implicit Discrete Sliding Mode Control , 2016, IEEE Transactions on Automatic Control.

[36]  Hideo Fujimoto,et al.  Proxy-Based Sliding Mode Control: A Safer Extension of PID Position Control , 2010, IEEE Transactions on Robotics.

[37]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[38]  Xinghuo Yu,et al.  Discretization Effect on Equivalent Control-Based Multi-Input Sliding-Mode Control Systems , 2008, IEEE Transactions on Automatic Control.

[39]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[40]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[41]  Samir Adly,et al.  Well-Posedness, Robustness, and Stability Analysis of a Set-Valued Controller for Lagrangian Systems , 2013, SIAM J. Control. Optim..

[42]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[43]  Franck Plestan,et al.  Implicit discrete-time twisting controller without numerical chattering: analysis and experimental results , 2016 .

[44]  Franck Plestan,et al.  Discrete-time twisting controller without numerical chattering: analysis and experimental results with an implicit method , 2014, 53rd IEEE Conference on Decision and Control.

[45]  M. Zabarankin,et al.  Convex functional analysis , 2005 .

[46]  Roy M. Howard,et al.  Linear System Theory , 1992 .