Neural responses to visual scenes reveals inconsistencies between fMRI adaptation and multivoxel pattern analysis

[1]  I. Biederman Perceiving Real-World Scenes , 1972, Science.

[2]  M. Potter Meaning in visual search. , 1975, Science.

[3]  B. Tversky,et al.  Categories of environmental scenes , 1983, Cognitive Psychology.

[4]  A. Sirigu,et al.  Pure Topographical Disorientation: A Definition and Anatomical Basis , 1987, Cortex.

[5]  J. Tanaka,et al.  Object categories and expertise: Is the basic level in the eye of the beholder? , 1991, Cognitive Psychology.

[6]  N. Takahashi,et al.  Pure topographic disorientation due to right retrosplenial lesion , 1997, Neurology.

[7]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[8]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[9]  Russell A. Epstein,et al.  Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex , 2001, Cognitive neuropsychology.

[10]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[11]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[12]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[13]  M. Bar,et al.  Cortical Analysis of Visual Context , 2003, Neuron.

[14]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[15]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[16]  M. Cherrier,et al.  Agnosia for scenes in topographagnosia , 2003, Neuropsychologia.

[17]  Paul E. Downing,et al.  Viewpoint-Specific Scene Representations in Human Parahippocampal Cortex , 2003, Neuron.

[18]  Gabriele Janzen,et al.  Selective neural representation of objects relevant for navigation , 2004, Nature Neuroscience.

[19]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[20]  Jitendra Malik,et al.  When is scene identification just texture recognition? , 2004, Vision Research.

[21]  Sharon L. Thompson-Schill,et al.  Learning Places from Views: Variation in Scene Processing as a Function of Experience and Navigational Ability , 2005, Journal of Cognitive Neuroscience.

[22]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[23]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[25]  K. Grill-Spector,et al.  Repetition and the brain: neural models of stimulus-specific effects , 2006, Trends in Cognitive Sciences.

[26]  Wim Vanduffel,et al.  The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates , 2006, Neuron.

[27]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[29]  G. Orban,et al.  Selectivity of Neuronal Adaptation Does Not Match Response Selectivity: A Single-Cell Study of the fMRI Adaptation Paradigm , 2006, Neuron.

[30]  F. Fang,et al.  Duration-dependent FMRI adaptation and distributed viewer-centered face representation in human visual cortex. , 2007, Cerebral cortex.

[31]  Russell A. Epstein,et al.  Where Am I Now? Distinct Roles for Parahippocampal and Retrosplenial Cortices in Place Recognition , 2007, The Journal of Neuroscience.

[32]  Russell A. Epstein,et al.  Visual scene processing in familiar and unfamiliar environments. , 2007, Journal of neurophysiology.

[33]  Jonathan S. Cant,et al.  Cerebral Cortex Advance Access published April 28, 2006 Attention to Form or Surface Properties Modulates Different Regions of Human , 2022 .

[34]  P. Perona,et al.  What do we perceive in a glance of a real-world scene? , 2007, Journal of vision.

[35]  Russell A. Epstein,et al.  Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. , 2006, Cerebral cortex.

[36]  Amy L Shelton,et al.  Fixed versus dynamic orientations in environmental learning from ground-level and aerial perspectives , 2007, Psychological research.

[37]  Geoffrey Karl Aguirre,et al.  Continuous carry-over designs for fMRI , 2007, NeuroImage.

[38]  N. Kanwisher,et al.  Only some spatial patterns of fMRI response are read out in task performance , 2007, Nature Neuroscience.

[39]  Russell A. Epstein,et al.  Two kinds of FMRI repetition suppression? Evidence for dissociable neural mechanisms. , 2008, Journal of neurophysiology.

[40]  Jim M. Monti,et al.  Neural repetition suppression reflects fulfilled perceptual expectations , 2008, Nature Neuroscience.

[41]  Russell A. Epstein Parahippocampal and retrosplenial contributions to human spatial navigation , 2008, Trends in Cognitive Sciences.

[42]  Tom Michael Mitchell,et al.  Predicting Human Brain Activity Associated with the Meanings of Nouns , 2008, Science.

[43]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[44]  G. Aguirre,et al.  Different spatial scales of shape similarity representation in lateral and ventral LOC. , 2009, Cerebral cortex.

[45]  Dirk B. Walther,et al.  Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain , 2009, The Journal of Neuroscience.

[46]  Soojin Park,et al.  Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception , 2009, NeuroImage.

[47]  Yan Liu,et al.  Time course and stimulus dependence of repetition-induced response suppression in inferotemporal cortex. , 2009, Journal of neurophysiology.

[48]  Michelle R. Greene,et al.  Recognition of natural scenes from global properties: Seeing the forest without representing the trees , 2009, Cognitive Psychology.

[49]  K. Grill-Spector,et al.  fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales. , 2010, Journal of neurophysiology.

[50]  R. Vogels,et al.  Effects of adaptation on the stimulus selectivity of macaque inferior temporal spiking activity and local field potentials. , 2010, Cerebral cortex.

[51]  Denis Schluppeck,et al.  A comparison of fMRI adaptation and multivariate pattern classification analysis in visual cortex , 2010, NeuroImage.

[52]  Chris I. Baker,et al.  The structure of scene representations across the ventral visual pathway , 2010 .

[53]  Jascha D. Swisher,et al.  Multiscale Pattern Analysis of Orientation-Selective Activity in the Primary Visual Cortex , 2010, The Journal of Neuroscience.

[54]  Hans P. Op de Beeck,et al.  Probing the mysterious underpinnings of multi-voxel fMRI analyses , 2010, NeuroImage.

[55]  Rufin Vogels,et al.  Stimulus repetition probability does not affect repetition suppression in macaque inferior temporal cortex. , 2011, Cerebral cortex.

[56]  Soojin Park,et al.  Disentangling Scene Content from Spatial Boundary: Complementary Roles for the Parahippocampal Place Area and Lateral Occipital Complex in Representing Real-World Scenes , 2011, The Journal of Neuroscience.

[57]  Russell A. Epstein,et al.  Distances between Real-World Locations Are Represented in the Human Hippocampus , 2011, The Journal of Neuroscience.

[58]  T. V. Sewards Neural structures and mechanisms involved in scene recognition: A review and interpretation , 2011, Neuropsychologia.

[59]  Russell A. Epstein,et al.  Constructing scenes from objects in human occipitotemporal cortex , 2011, Nature Neuroscience.

[60]  Jeremy Freeman,et al.  Orientation Decoding Depends on Maps, Not Columns , 2011, The Journal of Neuroscience.

[61]  Johan Wagemans,et al.  Dynamic Norm-based Encoding for Unfamiliar Shapes in Human Visual Cortex , 2011, Journal of Cognitive Neuroscience.