Asymptotic interplay of states and adaptive coupling gains in the Lohe Hermitian sphere model

<p style='text-indent:20px;'>We study emergent dynamics of the Lohe Hermitian sphere (LHS) model with the same free flows under the dynamic interplay between state evolution and adaptive couplings. The LHS model is a complex counterpart of the Lohe sphere (LS) model on the unit sphere in Euclidean space, and when particles lie in the Euclidean unit sphere embedded in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb C^{d+1} $\end{document}</tex-math></inline-formula>, it reduces to the Lohe sphere model. In the absence of interactions between states and coupling gains, emergent dynamics have been addressed in [<xref ref-type="bibr" rid="b23">23</xref>]. In this paper, we further extend earlier results in the aforementioned work to the setting in which the state and coupling gains are dynamically interrelated via two types of coupling laws, namely anti-Hebbian and Hebbian coupling laws. In each case, we present two sufficient frameworks leading to complete aggregation depending on the coupling laws, when the corresponding free flow is the same for all particles.</p>

[1]  Do-Hyun Kim State-Dependent Dynamics of the Lohe Matrix Ensemble on the Unitary Group under the Gradient Flow , 2020, SIAM J. Appl. Dyn. Syst..

[2]  Lee DeVille,et al.  Synchronization and Stability for Quantum Kuramoto , 2018, Journal of Statistical Physics.

[3]  Johan Thunberg,et al.  Lifting method for analyzing distributed synchronization on the unit sphere , 2018, Autom..

[4]  Seung‐Yeal Ha,et al.  Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model , 2012 .

[5]  Seung-Yeal Ha,et al.  From the Lohe Tensor Model to the Lohe Hermitian Sphere Model and Emergent Dynamics , 2020, SIAM J. Appl. Dyn. Syst..

[6]  J. Buck,et al.  Biology of Synchronous Flashing of Fireflies , 1966, Nature.

[7]  I. Aoki A simulation study on the schooling mechanism in fish. , 1982 .

[8]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[9]  Seung-Yeal Ha,et al.  Emergent Dynamics of Kuramoto Oscillators with Adaptive Couplings: Conservation Law and Fast Learning , 2018, SIAM J. Appl. Dyn. Syst..

[10]  Huzihiro Araki,et al.  International Symposium on Mathematical Problems in Theoretical Physics , 1975 .

[11]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[12]  Seung‐Yeal Ha,et al.  On the Relaxation Dynamics of Lohe Oscillators on Some Riemannian Manifolds , 2018, Journal of Statistical Physics.

[13]  J. Bronski,et al.  A Matrix-Valued Kuramoto Model , 2019, Journal of Statistical Physics.

[14]  Mark W. Spong,et al.  On Exponential Synchronization of Kuramoto Oscillators , 2009, IEEE Transactions on Automatic Control.

[15]  Seung-Yeal Ha,et al.  Complete Entrainment of Lohe Oscillators under Attractive and Repulsive Couplings , 2014, SIAM J. Appl. Dyn. Syst..

[16]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[17]  X. Xue,et al.  Synchronization analysis of Kuramoto oscillators , 2013 .

[18]  M. A. Lohe Systems of matrix Riccati equations, linear fractional transformations, partial integrability and synchronization , 2019, Journal of Mathematical Physics.

[19]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[20]  V. Jaćimović,et al.  Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere. , 2018, Chaos.

[21]  E. Caglioti,et al.  On the complete phase synchronization for the Kuramoto model in the mean-field limit , 2014, 1407.6551.

[22]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[23]  Seung-Yeal Ha,et al.  Synchronization of Kuramoto Oscillators with Adaptive Couplings , 2016, SIAM J. Appl. Dyn. Syst..

[24]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[25]  Seung‐Yeal Ha,et al.  Emergent Behaviors of Lohe Tensor Flocks , 2020, 2011.07717.

[26]  Seung-Yeal Ha,et al.  Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives , 2019, Mathematical Models and Methods in Applied Sciences.

[27]  Seung‐Yeal Ha,et al.  Emergence of phase-locked states for the Kuramoto model in a large coupling regime , 2016 .

[28]  Charles S. Peskin,et al.  Mathematical aspects of heart physiology , 1975 .

[29]  Pierre Degond,et al.  Quaternions in Collective Dynamics , 2017, Multiscale Model. Simul..

[30]  M. A. Lohe Quantum synchronization over quantum networks , 2010 .

[31]  A. Winfree The geometry of biological time , 1991 .

[32]  Dohyun Kim,et al.  Emergence of aggregation in the swarm sphere model with adaptive coupling laws , 2019, Kinetic & Related Models.

[33]  Florian Dörfler,et al.  On the Critical Coupling for Kuramoto Oscillators , 2010, SIAM J. Appl. Dyn. Syst..

[34]  M. A. Lohe Non-Abelian Kuramoto models and synchronization , 2009 .

[35]  Jiandong Zhu Synchronization of Kuramoto model in a high-dimensional linear space , 2013 .

[36]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[37]  Johan Thunberg,et al.  Almost Global Consensus on the $n$ -Sphere , 2016, IEEE Transactions on Automatic Control.

[38]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[39]  Seung‐Yeal Ha,et al.  A quest toward a mathematical theory of the dynamics of swarms , 2017 .