Model reduction by moment matching for nonlinear systems

The problem of model reduction by moment matching for nonlinear systems is addressed and solved using the recently introduced notion of moment for nonlinear systems. It is shown that reduced order models can be parameterized by a free mapping which, in turn, can be used so that the model possesses specific properties, e.g. it has an asymptotically stable equilibrium or given relative degree, it is minimum phase, it is passive. In addition, a nonlinear enhancement of the notion of Markov parameters is provided. The theory is illustrated by means of simple examples.

[1]  R. Firoozian Feedback Control Theory , 2009 .

[2]  Jack K. Hale,et al.  Behavior near constant solutions of functional differential equations , 1974 .

[3]  Wei-Yong Yan,et al.  Near-Optimal Model Reduction , 2001 .

[4]  F. Al-Sunni,et al.  Approximation of time-delay systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[5]  Alessandro Astolfi,et al.  A new look at model reduction by moment matching for linear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[6]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[7]  M. Kreĭn,et al.  ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .

[8]  M. Safonov,et al.  Optimal Hankel model reduction for nonminimal systems , 1990 .

[9]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[10]  J. Hale Theory of Functional Differential Equations , 1977 .

[11]  Serkan Gugercin,et al.  Interpolation theory for structure-preserving model reduction , 2008, 2008 47th IEEE Conference on Decision and Control.

[12]  Christopher I. Byrnes,et al.  Steady state response, separation principle and the output regulation of nonlinear systems , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[13]  Christopher I. Byrnes,et al.  Steady-state behaviors in nonlinear systems with an application to robust disturbance rejection , 2008, Annu. Rev. Control..

[14]  J. Scherpen H∞ Balancing for Nonlinear Systems , 1996 .

[15]  van der Arjan Schaft,et al.  Normalized coprime factorizations and balancing for unstable nonlinear systems , 1994 .

[16]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[17]  Alessandro Astolfi,et al.  Robust output feedback stabilization of the angular velocity of a rigid body , 1999 .

[18]  W. Steven Gray,et al.  General input balancing and model reduction for linear and nonlinear systems , 1997, 1997 European Control Conference (ECC).

[19]  H. Banks,et al.  Spline approximations for functional differential equations , 1979 .

[20]  Danny C. Sorensen,et al.  Passivity preserving model reduction via interpolation of spectral zeros , 2003, 2003 European Control Conference (ECC).

[21]  Alessandro Astolfi,et al.  Model reduction by moment matching for switched power converters , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[22]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[23]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[24]  Alessandro Astolfi,et al.  MODEL REDUCTION BY MOMENT MATCHING , 2007 .

[25]  Tzyh Jong Tarn,et al.  A several complex variables approach to feedback stabilization of linear neutral delay-differential systems , 1984, Mathematical systems theory.

[26]  Paul Van Dooren,et al.  Model reduction and the solution of Sylvester equations , 2006 .

[27]  Jonathan R. Partington,et al.  Shift Operator Induced Approximations of Delay Systems , 1999 .

[28]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[29]  P. V. Doorenb,et al.  Sylvester equations and projection-based model reduction , 2003 .

[30]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[31]  Alessandro Astolfi,et al.  Model Reduction by Moment Matching for Linear and Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[32]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[33]  Ubaid M. Al-Saggaf,et al.  New model reduction scheme for bilinear systems , 1994 .

[34]  Tryphon T. Georgiou,et al.  The interpolation problem with a degree constraint , 1999, IEEE Trans. Autom. Control..

[35]  A. Isidori Nonlinear Control Systems , 1985 .

[36]  M. G. Yoon,et al.  A new approximation method for time-delay systems , 1997, IEEE Trans. Autom. Control..

[37]  G. Fernández-Anaya,et al.  Unsolved Problems in Mathematical Systems and Control Theory , 2005, IEEE Transactions on Automatic Control.

[38]  Yoshito Ohta,et al.  Formulas for Hankel singular values and vectors for a class of input delay systems , 1999, Autom..

[39]  Maamar Bettayeb,et al.  Characterization of the solution to the optimal H∞ model reduction problem , 1993 .

[40]  Kenji Fujimoto,et al.  Model Reduction of Nonlinear Differential-Algebraic Equations , 2007 .

[41]  Christiane Hespel,et al.  Approximation of Nonlinear Dynamic Systems by Rational Series , 1991, Theor. Comput. Sci..

[42]  Jonathan R. Partington,et al.  Laguerre and Kautz shift approximations of delay systems , 1999 .

[43]  Jacquelien M. A. Scherpen,et al.  Nonlinear input-normal realizations based on the differential eigenstructure of Hankel operators , 2005, IEEE Transactions on Automatic Control.

[44]  Jacquelien M. A. Scherpen,et al.  Minimality and local state decompositions of a nonlinear state space realization using energy functions , 2000, IEEE Trans. Autom. Control..

[45]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[46]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[47]  Wei-Yong Yan,et al.  H2 near-optimal model reduction , 2001, IEEE Trans. Autom. Control..

[48]  Dirk Aeyes,et al.  Comments on the stabilization of the angular velocity of a rigid body , 1988 .

[49]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[50]  P. Khargonekar,et al.  Approximation of infinite-dimensional systems , 1989 .

[51]  A. Astolfi,et al.  Adaptive partial state feedback control of the DC-to-DC Cuk converter , 2005, Proceedings of the 2005, American Control Conference, 2005..

[52]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[53]  Jie Huang,et al.  Nonlinear Output Regulation: Theory and Applications , 2004 .

[54]  Erik I. Verriest,et al.  Balanced realizations near stable invariant manifolds , 2006, Autom..

[55]  Sanjay Lall,et al.  Error-bounds for balanced model-reduction of linear time-varying systems , 2003, IEEE Trans. Autom. Control..

[56]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[57]  Jacquelien M.A. Scherpen,et al.  Nonlinear Hilbert adjoints: properties and applications to Hankel singular value analysis , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[58]  Kenji Fujimoto,et al.  Computation of nonlinear balanced realization and model reduction based on Taylor series expansion , 2008, Syst. Control. Lett..

[59]  Jonathan R. Partington,et al.  Rational approximation of a class of infinite-dimensional systems I: Singular values of hankel operators , 1988, Math. Control. Signals Syst..

[60]  Panagiotis Tsiotras,et al.  Stability of linear time-delay systems: a delay-dependent criterion with a tight conservatism bound , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[61]  Arthur J. Krener,et al.  Model Reduction for Linear and Nonlinear Control Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[62]  J. Marsden,et al.  Structure-preserving Model Reduction of Mechanical Systems , 2000 .

[63]  C. Hespel,et al.  Truncated bilinear approximants: Carleman, finite volterra, Padé-type, geometric and structural automata , 1991 .

[64]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[65]  J. M. A. Scherpen,et al.  Balancing for nonlinear systems , 1993 .

[66]  Alessandro Astolfi,et al.  Model reduction by moment matching, steady-state response and projections , 2010, 49th IEEE Conference on Decision and Control (CDC).

[67]  J. Willems,et al.  On the solution of the minimal rational interpolation problem , 1990 .

[68]  P. Mäkilä,et al.  Approximation of delay systems—a case study , 1991 .

[69]  C. Byrnes,et al.  A complete parameterization of all positive rational extensions of a covariance sequence , 1995, IEEE Trans. Autom. Control..

[70]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[71]  D. Meyer Fractional balanced reduction: model reduction via fractional representation , 1990 .

[72]  Kenji Fujimoto,et al.  Balanced Realization and Model Order Reduction for Port-Hamiltonian Systems , 2008 .

[73]  Athanasios C. Antoulas,et al.  A new result on passivity preserving model reduction , 2005, Syst. Control. Lett..