Multi-resolution map building and loop closure with omnidirectional images

A topological mapping approach for omnidirectional images capable of answering loop closure queries at multiple resolutions is presented. The environment is mapped hierarchically using two layers. The first layer consists of individual images and the second layer represents regions of the environment composed of groups of images from the first layer. A hierarchical algorithm is formulated that exploits this map structure for an efficient and accurate loop closure without the need of geometric verification. The vital parameters of loop closure are automatically learned from training data. Performance of our loop closure algorithm is experimentally evaluated on various publicly available datasets and compared to two state of the art techniques. The results show that agreeable performance is achieved even on low quality datasets without the need for geometric verification of loop closures common among many contemporary approaches.

[1]  Paul Newman,et al.  Appearance-only SLAM at large scale with FAB-MAP 2.0 , 2011, Int. J. Robotics Res..

[2]  Youcef Mezouar,et al.  Hierarchical visual mapping with omnidirectional images , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Paul Newman,et al.  SLAM-Loop Closing with Visually Salient Features , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[4]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[5]  Fabio Tozeto Ramos,et al.  Robust place recognition with stereo cameras , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Youcef Mezouar,et al.  Vision-based sparse topological mapping , 2014, Robotics Auton. Syst..

[7]  Alejandro Rituerto,et al.  Semantic labeling for indoor topological mapping using a wearable catadioptric system , 2014, Robotics Auton. Syst..

[8]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Hongbin Zha,et al.  Vision-based Global Localization Using a Visual Vocabulary , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  Jana Kosecka,et al.  Global localization and relative positioning based on scale-invariant keypoints , 2005, Robotics Auton. Syst..

[11]  Gregory Dudek,et al.  Robust place recognition using local appearance based methods , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Richard Szeliski,et al.  City-Scale Location Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Andras Majdik,et al.  Adaptive appearance based loop-closing in heterogeneous environments , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Paul Newman,et al.  Highly scalable appearance-only SLAM - FAB-MAP 2.0 , 2009, Robotics: Science and Systems.

[16]  Emanuele Menegatti,et al.  Image-based memory for robot navigation using properties of omnidirectional images , 2004, Robotics Auton. Syst..

[17]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[18]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[19]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[20]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[21]  Navid Nourani-Vatani,et al.  Scene change detection for vision-based topological mapping and localization , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Ales Leonardis,et al.  Panoramic Eigenimages for Spatial Localisation , 1999, CAIP.

[23]  Paul Newman,et al.  FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance , 2008, Int. J. Robotics Res..

[24]  Paul Newman,et al.  Outdoor SLAM using visual appearance and laser ranging , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[25]  Dorian Gálvez-López,et al.  Real-time loop detection with bags of binary words , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Andrew Zisserman,et al.  Video Google: Efficient Visual Search of Videos , 2006, Toward Category-Level Object Recognition.

[27]  Jana Kosecka,et al.  Localization in Urban Environments Using a Panoramic Gist Descriptor , 2013, IEEE Transactions on Robotics.

[28]  Naokazu Yokoya,et al.  Memory-based self-localization using omnidirectional images , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[29]  Maurice K. Wong,et al.  Algorithm AS136: A k-means clustering algorithm. , 1979 .

[30]  Jean-Arcady Meyer,et al.  Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words , 2008, IEEE Transactions on Robotics.

[31]  David Filliat,et al.  A visual bag of words method for interactive qualitative localization and mapping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[32]  Yang Liu,et al.  Visual loop closure detection with a compact image descriptor , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Vincent Lepetit,et al.  BRIEF: Computing a Local Binary Descriptor Very Fast , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[35]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[36]  Ben J. A. Kröse,et al.  Hierarchical map building using visual landmarks and geometric constraints , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Paul Newman,et al.  Detecting Loop Closure with Scene Sequences , 2007, International Journal of Computer Vision.

[38]  Roland Siegwart,et al.  Incremental robot mapping with fingerprints of places , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  João Filipe Ferreira,et al.  Integration of Multiple Sensors using Binary Features in a Bernoulli Mixture Model , 2006, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[40]  Kostas Daniilidis,et al.  Constructing Topological Maps using Markov Random Fields and Loop-Closure Detection , 2009, NIPS.

[41]  Friedrich Fraundorfer,et al.  Topological mapping, localization and navigation using image collections , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Ben J. A. Kröse,et al.  A probabilistic model for appearance-based robot localization , 2001, Image Vis. Comput..

[43]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[44]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[45]  Jana Kosecka,et al.  Probabilistic location recognition using reduced feature set , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[46]  Cordelia Schmid,et al.  Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Jean-Arcady Meyer,et al.  Visual topological SLAM and global localization , 2009, 2009 IEEE International Conference on Robotics and Automation.

[48]  Tom Duckett,et al.  Incremental Spectral Clustering and Its Application To Topological Mapping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[49]  Niko Sünderhauf,et al.  BRIEF-Gist - closing the loop by simple means , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  H. Jeffreys,et al.  Theory of probability , 1896 .

[51]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[52]  Luc Van Gool,et al.  From omnidirectional images to hierarchical localization , 2007, Robotics Auton. Syst..

[53]  Roland Siegwart,et al.  DP-FACT: Towards topological mapping and scene recognition with color for omnidirectional camera , 2012, 2012 IEEE International Conference on Robotics and Automation.

[54]  Gregory Dudek,et al.  Mobile robot localization from learned landmarks , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[55]  Roland Siegwart,et al.  Scene recognition with omnidirectional vision for topological map using lightweight adaptive descriptors , 2009 .

[56]  Wolfram Burgard,et al.  Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization , 2005, IEEE Transactions on Robotics.

[57]  Ananth Ranganathan,et al.  PLISS: Detecting and Labeling Places Using Online Change-Point Detection , 2010, Robotics: Science and Systems.

[58]  Cordelia Schmid,et al.  Evaluation of GIST descriptors for web-scale image search , 2009, CIVR '09.

[59]  Philippe Martinet,et al.  Image Sequence Partitioning for outdoor mapping , 2012, 2012 IEEE International Conference on Robotics and Automation.

[60]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..