The good, the bad and the neutral: Electrophysiological responses to feedback stimuli

[1]  D. Yves von Cramon,et al.  The Role of Intact Frontostriatal Circuits in Error Processing , 2006, Journal of Cognitive Neuroscience.

[2]  Clay B. Holroyd,et al.  The feedback-related negativity reflects the binary evaluation of good versus bad outcomes , 2006, Biological Psychology.

[3]  Clay B. Holroyd,et al.  Knowing good from bad: differential activation of human cortical areas by positive and negative outcomes , 2005, The European journal of neuroscience.

[4]  E. Procyk,et al.  Anterior cingulate error‐related activity is modulated by predicted reward , 2005, The European journal of neuroscience.

[5]  Clay B. Holroyd,et al.  ERP correlates of feedback and reward processing in the presence and absence of response choice. , 2005, Cerebral cortex.

[6]  Dirk J. Heslenfeld,et al.  Activity in human reward-sensitive brain areas is strongly context dependent , 2005, NeuroImage.

[7]  W. Schultz,et al.  Adaptive Coding of Reward Value by Dopamine Neurons , 2005, Science.

[8]  Clay B. Holroyd,et al.  Brain potentials associated with expected and unexpected good and bad outcomes. , 2005, Psychophysiology.

[9]  M. Walton,et al.  The mesocortical dopamine projection to anterior cingulate cortex plays no role in guiding effort-related decisions. , 2005, Behavioral neuroscience.

[10]  A. Rodríguez-Fornells,et al.  Brain potentials related to self-generated and external information used for performance monitoring , 2005, Clinical Neurophysiology.

[11]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[12]  Clay B. Holroyd,et al.  A mechanism for error detection in speeded response time tasks. , 2005, Journal of experimental psychology. General.

[13]  Cameron S. Carter,et al.  Errors without conflict: Implications for performance monitoring theories of anterior cingulate cortex , 2004, Brain and Cognition.

[14]  Jonathan D. Cohen,et al.  Computational roles for dopamine in behavioural control , 2004, Nature.

[15]  M. Gluck,et al.  Human midbrain sensitivity to cognitive feedback and uncertainty during classification learning. , 2004, Journal of neurophysiology.

[16]  A. Sanfey,et al.  Independent Coding of Reward Magnitude and Valence in the Human Brain , 2004, The Journal of Neuroscience.

[17]  Clay B. Holroyd,et al.  Reinforcement-related brain potentials from medial frontal cortex: origins and functional significance , 2004, Neuroscience & Biobehavioral Reviews.

[18]  Jeff T. Larsen,et al.  Context dependence of the event-related brain potential associated with reward and punishment. , 2004, Psychophysiology.

[19]  O. Hikosaka,et al.  Dopamine Neurons Can Represent Context-Dependent Prediction Error , 2004, Neuron.

[20]  Michael G. H. Coles,et al.  Anterior cingulate cortex, selection for action, and error processing , 2004 .

[21]  M. Posner The Cognitive Neuroscience of Attention , 2020 .

[22]  Clay B. Holroyd,et al.  Errors in reward prediction are re£ected in the event-related brain potential , 2003 .

[23]  B. Burle,et al.  Error negativity on correct trials: a reexamination of available data , 2003, Biological Psychology.

[24]  Adrian R. Willoughby,et al.  Are all medial frontal negativities created equal ? Toward a richer empirical basis for theories of action monitoring , 2003 .

[25]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[26]  Jonathan D. Cohen,et al.  Reward and Decision , 2002, Neuron.

[27]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[28]  V. Arshavsky,et al.  Like Night and Day Rods and Cones Have Different Pigment Regeneration Pathways , 2002, Neuron.

[29]  Roland E. Suri,et al.  TD models of reward predictive responses in dopamine neurons , 2002, Neural Networks.

[30]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[31]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[32]  P. Montague,et al.  A Computational Role for Dopamine Delivery in Human Decision-Making , 1998, Journal of Cognitive Neuroscience.

[33]  C. Braun,et al.  Event-Related Brain Potentials Following Incorrect Feedback in a Time-Estimation Task: Evidence for a Generic Neural System for Error Detection , 1997, Journal of Cognitive Neuroscience.

[34]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[36]  A. Barto,et al.  Adaptive Critics and the Basal Ganglia , 1994 .

[37]  G A Miller,et al.  Digital filtering: background and tutorial for psychophysiologists. , 1992, Psychophysiology.

[38]  E Donchin,et al.  A new method for off-line removal of ocular artifact. , 1983, Electroencephalography and clinical neurophysiology.

[39]  H J Keselman,et al.  Repeated measures F tests and psychophysiological research: controlling the number of false positives. , 1980, Psychophysiology.

[40]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.