Proximal Heterogeneous Block Input-Output Method and application to Blind Ptychographic Diffraction Imaging

We propose a general alternating minimization algorithm for nonconvex optimization problems with separable structure and nonconvex coupling between blocks of variables. To fix our ideas, we apply the methodology to the problem of blind ptychographic imaging. Compared to other schemes in the literature, our approach differs in two ways: (i) it is posed within a clear mathematical framework with practically verifiable assumptions, and (ii) under the given assumptions, it is provably convergent to critical points. A numerical comparison of our proposed algorithm with the current state-of-the-art on simulated and experimental data validates our approach and points toward directions for further improvement.

[1]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[2]  W. Hoppe,et al.  Dynamische Theorie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld , 1970 .

[3]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[4]  J. Rodenburg,et al.  The theory of super-resolution electron microscopy via Wigner-distribution deconvolution , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[5]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[6]  James V. Burke,et al.  Optical Wavefront Reconstruction: Theory and Numerical Methods , 2002, SIAM Rev..

[7]  Heinz H. Bauschke,et al.  Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.

[8]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[9]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[10]  A. G. Cullis,et al.  Hard-x-ray lensless imaging of extended objects. , 2007, Physical review letters.

[11]  Adrian S. Lewis,et al.  Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..

[12]  D. Russell Luke,et al.  Finding Best Approximation Pairs Relative to a Convex and Prox-Regular Set in a Hilbert Space , 2008, SIAM J. Optim..

[13]  J. Rodenburg Ptychography and Related Diffractive Imaging Methods , 2008 .

[14]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[15]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[16]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[17]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[18]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[19]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[20]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[21]  T Salditt,et al.  Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction. , 2012, Optics express.

[22]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[23]  Chao Yang,et al.  Efficient Algorithms for Ptychographic Phase Retrieval , 2014 .

[24]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging , 2014, ArXiv.

[25]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.