Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens

[1]  M. Bradley,et al.  Emotion and motivation. , 2007 .

[2]  Henk J Groenewegen,et al.  Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. , 2004, Journal of neurophysiology.

[3]  A. Kelley Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning , 2004, Neuroscience & Biobehavioral Reviews.

[4]  K. Berridge,et al.  Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding , 2003, The European journal of neuroscience.

[5]  P. Dayan,et al.  Reward, Motivation, and Reinforcement Learning , 2002, Neuron.

[6]  J. Mitrofanis,et al.  Ultrastructure of afferents from the zona incerta to the posterior and parafascicular thalamic nuclei of rats , 2002, The Journal of comparative neurology.

[7]  K. Berridge,et al.  Positive and Negative Motivation in Nucleus Accumbens Shell: Bivalent Rostrocaudal Gradients for GABA-Elicited Eating, Taste “Liking”/“Disliking” Reactions, Place Preference/Avoidance, and Fear , 2002, The Journal of Neuroscience.

[8]  K. Berridge,et al.  The Neuroscience of Natural Rewards: Relevance to Addictive Drugs , 2002, The Journal of Neuroscience.

[9]  B. Everitt,et al.  Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex , 2002, Neuroscience & Biobehavioral Reviews.

[10]  Floris G Wouterlood,et al.  Tracing tools to resolve neural circuits , 2002, Network.

[11]  B. Balleine,et al.  The Role of the Nucleus Accumbens in Instrumental Conditioning: Evidence of a Functional Dissociation between Accumbens Core and Shell , 2001, The Journal of Neuroscience.

[12]  K. Berridge,et al.  Fear and Feeding in the Nucleus Accumbens Shell: Rostrocaudal Segregation of GABA-Elicited Defensive Behavior Versus Eating Behavior , 2001, The Journal of Neuroscience.

[13]  S. Charpier,et al.  Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. , 2001, Cerebral cortex.

[14]  A. Reiner,et al.  Pathway tracing using biotinylated dextran amines , 2000, Journal of Neuroscience Methods.

[15]  J. Lanciego,et al.  Current concepts in neuroanatomical tracing , 2000, Progress in Neurobiology.

[16]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[17]  T. Robbins,et al.  Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. , 2000, Behavioral neuroscience.

[18]  D. S. Zahm,et al.  An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens , 2000, Neuroscience & Biobehavioral Reviews.

[19]  A. Vercelli,et al.  Recent techniques for tracing pathways in the central nervous system of developing and adult mammals , 2000, Brain Research Bulletin.

[20]  A. Kelley Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation , 1999, Psychobiology.

[21]  D. S. Zahm,et al.  Functional‐anatomical Implications of the Nucleus Accumbens Core and Shell Subterritories , 1999, Annals of the New York Academy of Sciences.

[22]  H. Groenewegen,et al.  Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats , 1999, Journal of Chemical Neuroanatomy.

[23]  A. Kelley,et al.  Feeding induced by GABA(A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. , 1999, Behavioral neuroscience.

[24]  T. Robbins,et al.  Dissociation in Effects of Lesions of the Nucleus Accumbens Core and Shell on Appetitive Pavlovian Approach Behavior and the Potentiation of Conditioned Reinforcement and Locomotor Activity byd-Amphetamine , 1999, The Journal of Neuroscience.

[25]  G. Aston-Jones,et al.  Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool , 1997, Neuroscience.

[26]  Ann E. Kelley,et al.  GABA in the Nucleus Accumbens Shell Participates in the Central Regulation of Feeding Behavior , 1997, The Journal of Neuroscience.

[27]  H. Groenewegen,et al.  The nucleus accumbens: gateway for limbic structures to reach the motor system? , 1996, Progress in brain research.

[28]  Ann E. Kelley,et al.  Excitotoxic lesions of the core and shell subregions of the nucleus accumbens differentially disrupt body weight regulation and motor activity in rat. , 1995 .

[29]  D. Joel,et al.  The organization of the basal ganglia-thalamocortical circuits: Open interconnected rather than closed segregated , 1994, Neuroscience.

[30]  H. Groenewegen,et al.  Immunohistochemical Characterization of the Shell and Core Territories of the Nucleus Accumbens in the Rat , 1994, The European journal of neuroscience.

[31]  D. Pinault Golgi-like labeling of a single neuron recorded extracellularly , 1994, Neuroscience Letters.

[32]  C. Pennartz,et al.  The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological and anatomical data , 1994, Progress in Neurobiology.

[33]  H. Groenewegen,et al.  Organization of the Projections from the Ventral Striato-Pallidal System to Ventral Mesencephalic Dopaminergic Neurons in the Rat , 1994 .

[34]  G. Percheron,et al.  The Basal Ganglia IV , 1994, Advances in Behavioral Biology.

[35]  D. S. Zahm,et al.  The patterns of afferent innervation of the core and shell in the “Accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro‐gold , 1993, The Journal of comparative neurology.

[36]  H. Groenewegen,et al.  Evidence for a multi‐compartmental histochemical organization of the nucleus accumbens in the rat , 1993, The Journal of comparative neurology.

[37]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  D. S. Zahm,et al.  Specificity in the efferent projections of the nucleus accumbens in the rat: Comparison of the rostral pole projection patterns with those of the core and shell , 1993, The Journal of comparative neurology.

[39]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[40]  D. S. Zahm,et al.  On the significance of subterritories in the “accumbens” part of the rat ventral striatum , 1992, Neuroscience.

[41]  H. Kuo,et al.  Ventral pallido‐striatal pathway in the rat brain: A light and electron microscopic study , 1992, The Journal of comparative neurology.

[42]  H. Groenewegen,et al.  Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  A. Reiner,et al.  Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies , 1992, Journal of Neuroscience Methods.

[44]  H. Groenewegen,et al.  Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat , 1992, The Journal of comparative neurology.

[45]  D. S. Zahm,et al.  Specificity in the projection patterns of accumbal core and shell in the rat , 1991, Neuroscience.

[46]  C. Wilson,et al.  Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  L. Heimer,et al.  Iontophoretic injection of fluoro-gold and other fluorescent tracers. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[48]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  C. Gerfen,et al.  Compartmental organization of the ventral striatum of the rat: Immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium‐binding protein , 1989, The Journal of comparative neurology.

[50]  C. Wilson,et al.  Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. , 1989, Journal of neurophysiology.

[51]  G. M. Peterson,et al.  Anterograde and retrograde axonal transport of Phaseolus vulgaris leucoagglutinin (PHA-L) from the globus pallidus to the striatum of the rat , 1988, Journal of Neuroscience Methods.

[52]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[53]  L. Heimer,et al.  Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunological study , 1985, Neuroscience.

[54]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[55]  S. T. Kitai,et al.  Morphological and physiological properties of neostriatal neurons: An intracellular horseradish peroxidase study in the rat , 1982, Neuroscience.

[56]  D. Shotton,et al.  Postsynaptic membrane folds of the frog neuromuscular junction visualized by scanning electron microscopy , 1979, Neuroscience.

[57]  G. P. Smith,et al.  Efferent connections and nigral afferents of the nucleus accumbens septi in the rat , 1978, Neuroscience.