Conditions for optimality of Naïve quantized finite horizon control

This paper presents properties of a control law which quantizes the unconstrained solution to a unitary horizon quadratic programme. This naïve quantized control law underlies many popular algorithms, such as ΣΔ-converters and decision feedback equalities, and is easily shown to be globally optimal for horizon one. However, the question arises as to whether it is also globally optimal for horizons greater than one, i.e. whether it solves a finite horizon quadratic programme, where decision variables are restricted to belonging to a quantized set. By using dynamic programming, we develop sufficient conditions for this to hold. The present analysis is restricted to first order plants. However, this case already raises a number of highly non-trivial issues. The results can be applied to arbitrary horizons and quantized sets, which may contain a finite or an infinite (though countable) number of elements.

[1]  G.C. Goodwin,et al.  When is the naive quantized control law globally optimal? , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[2]  Kai Kiihtelys Bandwidth and Quantization Constraints in Feedback Control , 2003 .

[3]  G. David Forney,et al.  Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference , 1972, IEEE Trans. Inf. Theory.

[4]  Tamer Basar,et al.  Randomized algorithms for quadratic stability of quantized sampled-data systems, , 2004, Autom..

[5]  Graham C. Goodwin,et al.  RECEDING HORIZON LINEAR QUADRATIC CONTROL WITH FINITE INPUT CONSTRAINT SETS , 2002 .

[6]  J. Baillieul Feedback coding for information-based control: operating near the data-rate limit , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[7]  John G. Proakis,et al.  Digital Communications , 1983 .

[8]  G. Evangelista Least mean squared error-design of complex FIR filters with quantized coefficients , 2001 .

[9]  Graham C. Goodwin,et al.  A moving horizon approach to Networked Control system design , 2004, IEEE Transactions on Automatic Control.

[10]  Graham C. Goodwin,et al.  Constrained Control and Estimation , 2005 .

[11]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[12]  Graham C. Goodwin,et al.  Anti-windup and Model Predictive Control: Reflections and Connections* , 2000, Eur. J. Control.

[13]  D.E. Quevedo,et al.  Control of EMI from switch-mode power supplies via multi-step optimization , 2004, Proceedings of the 2004 American Control Conference.

[14]  Bruce A. Francis,et al.  Limited Data Rate in Control Systems with Networks , 2002 .

[15]  Graham C. Goodwin,et al.  Multi-step optimal quantization in oversampled filter banks , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[16]  Graham C. Goodwin,et al.  An improved architecture for networked control systems , 2005 .

[17]  John Vanderkooy,et al.  Minimally Audible Noise Shaping , 1991 .

[18]  Y. Lim,et al.  Discrete coefficient FIR digital filter design based upon an LMS criteria , 1983 .

[19]  Marko Bacic,et al.  Model predictive control , 2003 .

[20]  Averill M. Law,et al.  The art and theory of dynamic programming , 1977 .

[21]  Graham C. Goodwin,et al.  Finite Alphabet Control and Estimation , 2003 .

[22]  Graham C. Goodwin,et al.  Disturbance sensitivity issues in predictive control , 1999 .

[23]  R. Evans,et al.  Stabilization with data-rate-limited feedback: tightest attainable bounds , 2000 .

[24]  Mark J. Damborg,et al.  Control of constrained discrete time linear systems using quantized controls , 1989, Autom..

[25]  Rodney A. Kennedy,et al.  Block decision feedback equalization , 1992, IEEE Trans. Commun..

[26]  Rohit U. Nabar,et al.  Introduction to Space-Time Wireless Communications , 2003 .

[27]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[28]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[29]  John Baillieul,et al.  Robust quantization for digital finite communication bandwidth (DFCB) control , 2004, IEEE Transactions on Automatic Control.

[30]  Sandro Zampieri,et al.  Stability analysis and synthesis for scalar linear systems with a quantized feedback , 2003, IEEE Trans. Autom. Control..

[31]  Jens Jorgen Nielsen Design of linear-phase direct-form FIR digital filters with quantized coefficients using error spectrum shaping , 1989, IEEE Trans. Acoust. Speech Signal Process..

[32]  Graham C. Goodwin,et al.  Moving horizon optimal quantizer for audio signals , 2003 .

[33]  Fang Zheng Peng,et al.  Multilevel inverters: a survey of topologies, controls, and applications , 2002, IEEE Trans. Ind. Electron..

[34]  G. Goodwin,et al.  Finite constraint set receding horizon quadratic control , 2004 .

[35]  Antonio Bicchi,et al.  On the reachability of quantized control systems , 2002, IEEE Trans. Autom. Control..

[36]  Antonio Bicchi,et al.  Stabilization of LTI Systems with Quantized State - Quantized Input Static Feedback , 2003, HSCC.

[37]  Graham C. Goodwin,et al.  Moving horizon design of discrete coefficient FIR filters , 2005, IEEE Transactions on Signal Processing.

[38]  Helmut Bölcskei,et al.  Noise reduction in oversampled filter banks using predictive quantization , 2001, IEEE Trans. Inf. Theory.

[39]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[40]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[41]  Antonio Cantoni,et al.  Stability of Decision Feedback Inverses , 1976, IEEE Trans. Commun..

[42]  Alberto Bemporad,et al.  Multiparametric nonlinear integer programming and explicit quantized optimal control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[43]  Gabor C. Temes,et al.  Oversampling delta-sigma data converters : theory, design, and simulation , 1992 .

[44]  Graham C. Goodwin,et al.  Multistep optimal analog-to-digital conversion , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[45]  Graham C. Goodwin,et al.  Multistep Detector for Linear ISI-Channels Incorporating Degrees of Belief in Past Estimates , 2007, IEEE Transactions on Communications.

[46]  Gabor C. Temes,et al.  Oversampling Delta Sigma Data Converters , 1991 .

[47]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[48]  S. Tewksbury,et al.  Oversampled, linear predictive and noise-shaping coders of order N g 1 , 1978 .

[49]  Stuart F. Bockman On-Off, Discrete-Time Control of a Stable First-Order Linear Plant , 1991, 1991 American Control Conference.

[50]  Michael A. Gerzon,et al.  Optimal Noise Shaping and Dither of Digital Signals , 1989 .

[51]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.