Automated Atlas-Based Segmentation of Brain Structures in MR Images: Application to a Population-Based Imaging Study

textabstractThe final type of segmentationmethod is atlas-based segmentation (sometimes also called label propagation). In this approach, additional knowledge is introduced through an atlas image, in which an expert has labeled the brain structures of interest. The atlas is first registered to the target image, and the resulting transformation is then used to deform the atlas labels to the coordinate system of the target image. During registration the similarity between the warped atlas image and the target image is maximized, while at the same time the deformation is constrained to ensure that the spatial information of the atlas is maintained.

[1]  M. Bobinski,et al.  The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease , 1999, Neuroscience.

[2]  D. Harvey,et al.  Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD , 2006, Neurology.

[3]  N. Schuff,et al.  Longitudinal volumetric MRI change and rate of cognitive decline , 2005, Neurology.

[4]  Stefan Klein,et al.  Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[5]  Nick C Fox,et al.  Baseline predictors of rates of hippocampal atrophy in mild cognitive impairment , 2007, Neurology.

[6]  Wiro J. Niessen,et al.  AUTOMATIC SEGMENTATION OF BRAIN TISSUE ANDWHITEMATTER LESIONS IN MRI , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[7]  P. Scheltens,et al.  A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging , 1993, Journal of the Neurological Sciences.

[8]  A. Convit,et al.  Specific Hippocampal Volume Reductions in Individuals at Risk for Alzheimer’s Disease , 1997, Neurobiology of Aging.

[9]  B Ostertun,et al.  Atrophy of hippocampus in patients with Alzheimer's disease and other diseases with memory impairment. , 1996, Dementia.

[10]  Thomas E. Nichols,et al.  Lesion probability maps of white matter hyperintensities in elderly individuals , 2006, Journal of Neurology.

[11]  A Hofman,et al.  Hippocampal, amygdalar, and global brain atrophy in different apolipoprotein E genotypes , 2002, Neurology.

[12]  Martial Hebert,et al.  Discriminative Random Fields , 2006, International Journal of Computer Vision.

[13]  Alexander Hammers,et al.  Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation , 2009, NeuroImage.

[14]  E. Tangalos,et al.  Mild Cognitive Impairment Clinical Characterization and Outcome , 1999 .

[15]  Nick C. Fox,et al.  A meta-analysis of hippocampal atrophy rates in Alzheimer's disease , 2009, Neurobiology of Aging.

[16]  O. Lopez,et al.  Cerebral Infarcts and Cognitive Performance: Importance of Location and Number of Infarcts , 2009, Stroke.

[17]  A. Hofman,et al.  Determinants of disease and disability in the elderly: The Rotterdam elderly study , 1991, European Journal of Epidemiology.

[18]  P. J. Koudstaal,et al.  Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI , 2003, Diabetologia.

[19]  Michel Verhaegen,et al.  Estimating the impulse response of buried objects from ground-penetrating radar signals , 2003, SPIE Defense + Commercial Sensing.

[20]  A. Hofman,et al.  The Rotterdam Study: objectives and design update , 2007, European Journal of Epidemiology.

[21]  Wiro J Niessen,et al.  POSTMENOPAUSAL HORMONE THERAPY AND REGIONAL BRAIN VOLUMES: THE WHIMS-MRI STUDY , 2009, Neurology.

[22]  D. A. Bennett,et al.  Rate of entorhinal and hippocampal atrophy in incipient and mild AD: Relation to memory function , 2010, Neurobiology of Aging.

[23]  A. Hofman,et al.  Cerebral white matter lesions and cognitive function: The Rotterdam scan study , 2000, Annals of neurology.

[24]  A Hofman,et al.  A follow‐up study of blood pressure and cerebral white matter lesions , 1999, Annals of neurology.

[25]  James J. Pekar,et al.  Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease , 2009, NeuroImage.

[26]  Nick C Fox,et al.  Presymptomatic hippocampal atrophy in Alzheimer's disease. A longitudinal MRI study. , 1996, Brain : a journal of neurology.

[27]  J. Baron,et al.  Relationships between Hippocampal Atrophy, White Matter Disruption, and Gray Matter Hypometabolism in Alzheimer's Disease , 2008, The Journal of Neuroscience.

[28]  H Yonezawa,et al.  Reduced size of right hippocampus in 39- to 80-year-old normal subjects carrying the apolipoprotein E epsilon4 allele. , 1997, Neuroscience letters.

[29]  H. Braak,et al.  Frequency of Stages of Alzheimer-Related Lesions in Different Age Categories , 1997, Neurobiology of Aging.

[30]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[31]  I. Veer,et al.  Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study , 2008, Brain : a journal of neurology.

[32]  Philip Scheltens,et al.  Midlife Blood Pressure and the Risk of Hippocampal Atrophy: The Honolulu Asia Aging Study , 2004, Hypertension.

[33]  Arno W. Hoes,et al.  Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. , 1997, Circulation.

[34]  A. Hofman,et al.  Incidence and risk of dementia. The Rotterdam Study. , 1998, American journal of epidemiology.

[35]  Michiel Schaap,et al.  Statistical Analysis of Structural Brain Connectivity , 2010, MICCAI.

[36]  Nikos Komodakis,et al.  Approximate Labeling via Graph Cuts Based on Linear Programming , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  H. Benali,et al.  Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. , 2008, Radiology.

[38]  A Hofman,et al.  Homocysteine and brain atrophy on MRI of non-demented elderly. , 2003, Brain : a journal of neurology.

[39]  James R. MacFall,et al.  Localization of age-associated white matter hyperintensities in late-life depression , 2003, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[40]  A. Hofman,et al.  Cerebral white matter lesions and depressive symptoms in elderly adults. , 2000, Archives of general psychiatry.

[41]  Monique M. B. Breteler,et al.  The Rotterdam Study: 2016 objectives and design update , 2015, European Journal of Epidemiology.

[42]  F. Fazekas,et al.  Pathologic correlates of incidental MRI white matter signal hyperintensities , 1993, Neurology.

[43]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[44]  A. Korczyn Mixed Dementia—the Most Common Cause of Dementia , 2002, Annals of the New York Academy of Sciences.

[45]  J. Troncoso,et al.  Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease , 1994, The Lancet.

[46]  Bram van Ginneken,et al.  Automated segmentation of caudate nucleus in MR brain images with voxel classification , 2007 .

[47]  A. Hofman,et al.  Silent brain infarcts and the risk of dementia and cognitive decline. , 2003, The New England journal of medicine.

[48]  G. Halliday,et al.  Patients with vascular dementia due to microvascular pathology have significant hippocampal neuronal loss , 2002, Journal of neurology, neurosurgery, and psychiatry.

[49]  Wiro J. Niessen,et al.  White matter lesion extension to automatic brain tissue segmentation on MRI , 2009, NeuroImage.

[50]  Josephine Barnes,et al.  Application of automated medial temporal lobe atrophy scale to Alzheimer disease. , 2007, Archives of neurology.

[51]  Josef Kittler,et al.  Moderating k-NN Classifiers , 2002, Pattern Analysis & Applications.

[52]  J. V. van Swieten,et al.  Hypertension in the elderly is associated with white matter lesions and cognitive decline , 1991, Annals of neurology.

[53]  Anders M. Dale,et al.  Sequence-independent segmentation of magnetic resonance images , 2004, NeuroImage.

[54]  Alexander Hammers,et al.  Three‐dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe , 2003, Human brain mapping.

[55]  J. Barnes,et al.  A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus , 2008, NeuroImage.

[56]  Wei Wen,et al.  The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals , 2004, NeuroImage.

[57]  Hilkka Soininen,et al.  Hippocampus in Alzheimer’s disease: a 3-year follow-up MRI study , 2000, Biological Psychiatry.

[58]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Norbert Schuff,et al.  Neuropathological basis of magnetic resonance images in aging and dementia , 2008, Annals of neurology.

[60]  T. Montine,et al.  Biomarkers for cognitive impairment and dementia in elderly people , 2008, The Lancet Neurology.

[61]  W. Markesbery,et al.  Brain infarction and the clinical expression of Alzheimer disease. , 1997, JAMA.

[62]  Daniel Rueckert,et al.  Automated localization of periventricular and subcortical white matter lesions , 2007, SPIE Medical Imaging.

[63]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[64]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[65]  M. A. Bell,et al.  Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. , 1990, AJNR. American journal of neuroradiology.

[66]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[67]  N. Schuff,et al.  Higher atrophy rate of entorhinal cortex than hippocampus in AD , 2004, Neurology.

[68]  Wiro J. Niessen,et al.  Brain tissue volumes in the general elderly population The Rotterdam Scan Study , 2008, Neurobiology of Aging.

[69]  J. C. Torre,et al.  Cerebral hypoperfusion yields capillary damage in the hippocampal CA1 area that correlates with spatial memory impairment , 1999, Neuroscience.

[70]  David A. Freedman,et al.  A Nonstochastic Interpretation of Reported Significance Levels , 1983 .

[71]  C. Jack,et al.  Rates of hippocampal atrophy correlate with change in clinical status in aging and AD , 2000, Neurology.

[72]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[73]  Martin Rossor,et al.  Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. , 2006, Archives of neurology.

[74]  Nick C Fox,et al.  Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease , 2005, Neurology.

[75]  W. Eric L. Grimson,et al.  A Bayesian model for joint segmentation and registration , 2006, NeuroImage.

[76]  A. Hofman,et al.  Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. , 2006, Archives of general psychiatry.

[77]  Michael I. Miller,et al.  Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging☆ , 2003, NeuroImage.

[78]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[79]  B. Winblad,et al.  Mild cognitive impairment in the general population: occurrence and progression to Alzheimer disease. , 2008, The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry.

[80]  P. Diggle Analysis of Longitudinal Data , 1995 .

[81]  Wiro J Niessen,et al.  A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. , 2010, Brain : a journal of neurology.

[82]  A. Alavi,et al.  MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. , 1987, AJR. American journal of roentgenology.

[83]  Makoto Takagi,et al.  Pathologic findings of silent hyperintense white matter lesions on MRI , 1999, Journal of the Neurological Sciences.

[84]  C. Jack,et al.  MR‐based hippocampal volumetry in the diagnosis of Alzheimer's disease , 1992, Neurology.

[85]  Blake D. Niederhauser,et al.  High‐resolution 7T MRI of the human hippocampus in vivo , 2008, Journal of magnetic resonance imaging : JMRI.

[86]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[87]  Domenico Inzitari,et al.  Cognitive Decline and Dementia Related to Cerebrovascular Diseases: Some Evidence and Concepts , 2009, Cerebrovascular Diseases.

[88]  Cynthia Jongen,et al.  Construction of periventricular white matter hyperintensity maps by spatial normalization of the lateral ventricles , 2009, Human brain mapping.

[89]  J T O'Brien,et al.  Medial temporal lobe atrophy on MRI differentiates Alzheimer's disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. , 2009, Brain : a journal of neurology.

[90]  Niels D Prins,et al.  Cerebral small-vessel disease and decline in information processing speed, executive function and memory. , 2005, Brain : a journal of neurology.

[91]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[92]  A. Berghold,et al.  Longitudinal multimodal imaging in mild to moderate Alzheimer disease: a pilot study with memantine , 2008, Journal of Neurology, Neurosurgery, and Psychiatry.

[93]  Jonas Persson,et al.  Reduced hippocampal volume in non-demented carriers of the apolipoprotein E ɛ4: Relation to chronological age and recognition memory , 2006, Neuroscience Letters.

[94]  Stefan Klein,et al.  Early diagnosis of dementia based on intersubject whole-brain dissimilarities , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[95]  M. Breteler Vascular Involvement in Cognitive Decline and Dementia: Epidemiologic Evidence from the Rotterdam Study and the Rotterdam Scan Study , 2000, Annals of the New York Academy of Sciences.

[96]  C. Jack,et al.  Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease , 1997, Neurology.

[97]  F. Fazekas,et al.  Apolipoprotein E4allele in the normal elderly: neuropsychologic and brain MRI correlates , 1996, Clinical genetics.

[98]  Monique M. B. Breteler,et al.  Incidence of dementia: does gender make a difference? , 2001, Neurobiology of Aging.

[99]  R. Mayeux,et al.  Hippocampal and entorhinal atrophy in mild cognitive impairment , 2007, Neurology.

[100]  Alan C. Evans,et al.  A fully automatic and robust brain MRI tissue classification method , 2003, Medical Image Anal..

[101]  Nick C Fox,et al.  Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study , 2006, The Lancet Neurology.

[102]  P. J. Koudstaal,et al.  Association between blood pressure, white matter lesions, and atrophy of the medial temporal lobe , 2005, Neurology.

[103]  K. McGraw,et al.  Forming inferences about some intraclass correlation coefficients. , 1996 .

[104]  Wiro J. Niessen,et al.  A ten year follow-up of hippocampal volume on MRI in early dementia and cognitive decline , 2009, Alzheimer's & Dementia.

[105]  Liana G. Apostolova,et al.  Comparison of AdaBoost and Support Vector Machines for Detecting Alzheimer's Disease Through Automated Hippocampal Segmentation , 2010, IEEE Transactions on Medical Imaging.

[106]  R. Schandry,et al.  Reduced brain perfusion and cognitive performance due to constitutional hypotension , 2006, Clinical Autonomic Research.

[107]  W. Eric L. Grimson,et al.  A Hierarchical Algorithm for MR Brain Image Parcellation , 2007, IEEE Transactions on Medical Imaging.

[108]  Xiao Han,et al.  Atlas Renormalization for Improved Brain MR Image Segmentation Across Scanner Platforms , 2007, IEEE Transactions on Medical Imaging.

[109]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[110]  W. Markesbery,et al.  Hippocampal volume as an index of Alzheimer neuropathology: Findings from the Nun Study , 2002, Neurology.

[111]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[112]  P. Scheltens,et al.  White Matter Lesions Are Associated With Progression of Medial Temporal Lobe Atrophy in Alzheimer Disease , 2006, Stroke.

[113]  Wiro J. Niessen,et al.  Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts , 2008, NeuroImage.

[114]  Daniel Rueckert,et al.  LEAP: Learning embeddings for atlas propagation , 2010, NeuroImage.

[115]  C. Jack,et al.  Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD , 2004, Neurology.

[116]  Lei Wang,et al.  Correlations Between Antemortem Hippocampal Volume and Postmortem Neuropathology in AD Subjects , 2004, Alzheimer disease and associated disorders.

[117]  D. Harvey,et al.  Anatomical Mapping of White Matter Hyperintensities (WMH): Exploring the Relationships Between Periventricular WMH, Deep WMH, and Total WMH Burden , 2005, Stroke.

[118]  Owen T. Carmichael,et al.  Abnormal Regional Cerebral Blood Flow in Cognitively Normal Elderly Subjects With Hypertension , 2008, Stroke.

[119]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[120]  Sirkka Goebeler,et al.  Apolipoprotein E–dependent accumulation of Alzheimer disease–related lesions begins in middle age , 2009, Annals of neurology.

[121]  C. Jack,et al.  Memory and MRI-based hippocampal volumes in aging and AD , 2000, Neurology.

[122]  Stephanie Powell,et al.  Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures , 2008, NeuroImage.

[123]  B. Winblad,et al.  Early symptoms and signs of cognitive deficits might not always be detectable in persons who develop Alzheimer's disease , 2008, International Psychogeriatrics.

[124]  R. Havlik,et al.  Midlife blood pressure and dementia: the Honolulu–Asia aging study☆ , 2000, Neurobiology of Aging.

[125]  D. Royall,et al.  Alzheimer disease as a vascular disorder: nosological evidence. , 2002, Stroke.

[126]  A. Convit,et al.  Hippocampal volume losses in minimally impaired elderly , 1995, The Lancet.

[127]  S. Studenski,et al.  Age-associated leukoaraiosis and cortical cholinergic deafferentation , 2009, Neurology.

[128]  A. Hofman,et al.  Carotid atherosclerosis and cerebral white matter lesions in a population based magnetic resonance imaging study , 2000, Journal of Neurology.

[129]  Wiro J. Niessen,et al.  Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification , 2007, NeuroImage.

[130]  N. Schuff,et al.  Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease , 2001, Journal of neurology, neurosurgery, and psychiatry.

[131]  W. Markesbery,et al.  Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS☆ , 2000, Neurobiology of Aging.

[132]  Frederik Barkhof,et al.  White matter lesions and hippocampal atrophy in Alzheimer’s disease , 2004, Neurology.

[133]  Brian Patenaude,et al.  Bayesian statistical models of shape and appearance for subcortical brain segmentation , 2007 .

[134]  I. McKeith,et al.  Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales , 2001, The Lancet.

[135]  Marti J. Anderson,et al.  Permutation Tests for Linear Models , 2001 .