Spike timing, calcium signals and synaptic plasticity

[1]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[2]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[3]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Dimitri M. Kullmann,et al.  Ca2+ Entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus , 1992, Neuron.

[7]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[8]  D. Debanne,et al.  Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[9]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[10]  Robert S. Zucker,et al.  Postsynaptic Levels of [Ca2+]i Needed to Trigger LTD and LTP , 1996, Neuron.

[11]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[12]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[13]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[14]  R. Anwyl,et al.  LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro. , 1997, Journal of neurophysiology.

[15]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[16]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[17]  W. Singer,et al.  Relation Between Dendritic Ca2+ Levels and the Polarity of Synaptic Long‐term Modifications in Rat Visual Cortex Neurons , 1997, The European journal of neuroscience.

[18]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[19]  R. Nicoll,et al.  Two Distinct Forms of Long-Term Depression Coexist in CA1 Hippocampal Pyramidal Cells , 1997, Neuron.

[20]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[21]  D. Clapham,et al.  NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation , 1998, Nature Neuroscience.

[22]  George J. Augustine,et al.  Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites , 1998, Nature.

[23]  Lawrence C. Katz,et al.  Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors , 1998, Nature Neuroscience.

[24]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Idan Segev,et al.  Dendritic processing , 1998 .

[26]  Arthur Konnerth,et al.  A new class of synaptic response involving calcium release in dendritic spines , 1998, Nature.

[27]  P. De Koninck,et al.  Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. , 1998, Science.

[28]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[29]  R. Huganir,et al.  Calmodulin Mediates Calcium-Dependent Inactivation of N-Methyl-D-Aspartate Receptors , 1998, Neuron.

[30]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[31]  D. Debanne,et al.  Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures , 1998, The Journal of physiology.

[32]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[33]  Scott T. Wong,et al.  Ca2+/calmodulin binds to and modulates P/Q-type calcium channels , 1999, Nature.

[34]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[35]  D. T. Yue,et al.  Calmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium Channels , 1999, Neuron.

[36]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[37]  W Zieglgänsberger,et al.  Precisely localized LTD in the neocortex revealed by infrared-guided laser stimulation. , 1999, Science.

[38]  D. Debanne,et al.  The role of dendritic filtering in associative long-term synaptic plasticity. , 1999, Learning & memory.

[39]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[40]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[41]  J M Bekkers,et al.  Properties of voltage‐gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat , 2000, The Journal of physiology.

[42]  B. Sakmann,et al.  Voltage‐gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients , 2000, The Journal of physiology.

[43]  R. Yuste,et al.  Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization , 2000, The Journal of Neuroscience.

[44]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[45]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[46]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.

[47]  T. Sejnowski,et al.  Natural patterns of activity and long-term synaptic plasticity , 2000, Current Opinion in Neurobiology.

[48]  D. Linden,et al.  Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis , 2000, Neuron.

[49]  D. Feldman,et al.  Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[50]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[51]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[52]  T. Bonhoeffer,et al.  Pairing-Induced Changes of Orientation Maps in Cat Visual Cortex , 2001, Neuron.

[53]  Henry Markram,et al.  An Algorithm for Modifying Neurotransmitter Release Probability Based on Pre- and Postsynaptic Spike Timing , 2001, Neural Computation.

[54]  Y. Dan,et al.  Stimulus Timing-Dependent Plasticity in Cortical Processing of Orientation , 2001, Neuron.

[55]  M. Larkum,et al.  High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. , 2001, Journal of neurophysiology.

[56]  Thomas Euler,et al.  Dendritic processing , 2001, Current Opinion in Neurobiology.

[57]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[58]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[59]  M. W. Brown,et al.  An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat , 2001, The Journal of physiology.

[60]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[61]  Hilmar Bading,et al.  Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity , 2001, Nature Neuroscience.

[62]  C. Colbert,et al.  Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1. , 2001, Journal of neurophysiology.

[63]  Terrence J. Sejnowski,et al.  An MCell model of calcium dynamics and frequency-dependence of calmodulin activation in dendritic spines , 2001, Neurocomputing.

[64]  R. Fields,et al.  Spike Frequency Decoding and Autonomous Activation of Ca2+–Calmodulin-Dependent Protein Kinase II in Dorsal Root Ganglion Neurons , 2001, The Journal of Neuroscience.

[65]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[66]  Nace L. Golding,et al.  Compartmental Models Simulating a Dichotomy of Action Potential Backpropagation in Ca1 Pyramidal Neuron Dendrites , 2001, Journal of neurophysiology.

[67]  Rajesh P. N. Rao,et al.  Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning , 2001, Neural Computation.

[68]  Florian Engert,et al.  Emergence of Input Specificity of LTP during Development of Retinotectal Connections In Vivo , 2001, Neuron.

[69]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[70]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[71]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[72]  Wei-Yang Lu,et al.  Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons , 2001, Neuron.

[73]  A. C. Greenwood,et al.  Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. , 2001, Journal of neurophysiology.

[74]  D. T. Yue,et al.  Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels , 2001, Nature.

[75]  M. Umemiya,et al.  A Calcium-Dependent Feedback Mechanism Participates in Shaping Single NMDA Miniature EPSCs , 2001, The Journal of Neuroscience.

[76]  J. Lisman,et al.  A Model of Synaptic Memory A CaMKII/PP1 Switch that Potentiates Transmission by Organizing an AMPA Receptor Anchoring Assembly , 2001, Neuron.

[77]  D. Linden The expression of cerebellar LTD in culture is not associated with changes in AMPA-receptor kinetics, agonist affinity, or unitary conductance , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[79]  R. Dolmetsch,et al.  Signaling to the Nucleus by an L-type Calcium Channel-Calmodulin Complex Through the MAP Kinase Pathway , 2001, Science.

[80]  L. Cooper,et al.  A biophysical model of bidirectional synaptic plasticity: Dependence on AMPA and NMDA receptors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[81]  C. Holmgren,et al.  Coincident Spiking Activity Induces Long-Term Changes in Inhibition of Neocortical Pyramidal Cells , 2001, The Journal of Neuroscience.

[82]  D. T. Yue,et al.  Preassociation of Calmodulin with Voltage-Gated Ca2+ Channels Revealed by FRET in Single Living Cells , 2001, Neuron.

[83]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[84]  Rafael Yuste,et al.  Calcium Dynamics of Spines Depend on Their Dendritic Location , 2002, Neuron.

[85]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[86]  Michele Migliore,et al.  Role of an A-Type K+ Conductance in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons , 1999, Journal of Computational Neuroscience.

[87]  William Holmes,et al.  Models of Calmodulin Trapping and CaM Kinase II Activation in a Dendritic Spine , 2004, Journal of Computational Neuroscience.