Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity

[1]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[2]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[3]  M. Meyerson,et al.  Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. , 2012, Cancer research.

[4]  Angela N. Brooks,et al.  Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing , 2012, Cell.

[5]  Yuchen Jiao,et al.  Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. , 2012, Cancer discovery.

[6]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[7]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[8]  Keith A. Boroevich,et al.  Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators , 2012, Nature Genetics.

[9]  A. Sivachenko,et al.  Sequence analysis of mutations and translocations across breast cancer subtypes , 2012, Nature.

[10]  Bin Tean Teh,et al.  Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes , 2012, Nature Genetics.

[11]  A. Sivachenko,et al.  Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer , 2012, Nature Genetics.

[12]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[13]  L. Zender,et al.  Deregulated MYC expression induces dependence upon AMPK-related kinase 5 , 2012, Nature.

[14]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[15]  T. Fennell,et al.  Melanoma genome sequencing reveals frequent PREX2 mutations , 2012, Nature.

[16]  V. Abkevich,et al.  Mapping of homozygous deletions in verified esophageal adenocarcinoma cell lines and xenografts , 2012, Genes, chromosomes & cancer.

[17]  T. Kigawa,et al.  Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms , 2012, Proceedings of the National Academy of Sciences.

[18]  Meng Li,et al.  Somatic Mutations in the Chromatin Remodeling Gene ARID1A Occur in Several Tumor Types , 2011, Human mutation.

[19]  Todd R. Golub,et al.  PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling , 2011, Oncogene.

[20]  S. Raab,et al.  Clinicopathologic and Molecular Profiles of Microsatellite Unstable Barrett Esophagus-associated Adenocarcinoma , 2011, American Journal of Surgical Pathology.

[21]  Tian-Li Wang,et al.  ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. , 2011, Cancer research.

[22]  Kristian Cibulskis,et al.  ContEst: estimating cross-contamination of human samples in next-generation sequencing data , 2011, Bioinform..

[23]  Kristian Cibulskis,et al.  Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion , 2011, Nature Genetics.

[24]  A. McKenna,et al.  The Mutational Landscape of Head and Neck Squamous Cell Carcinoma , 2011, Science.

[25]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[26]  A. Iafrate,et al.  Clinicopathologic and Molecular Profiles of Microsatellite Unstable Barrett Esophagus-associated Adenocarcinoma , 2011, The American journal of surgical pathology.

[27]  R. Lothe,et al.  SPG20, a novel biomarker for early detection of colorectal cancer, encodes a regulator of cytokinesis , 2011, Oncogene.

[28]  Trevor J Pugh,et al.  Initial genome sequencing and analysis of multiple myeloma , 2011, Nature.

[29]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[30]  P. A. Futreal,et al.  Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma , 2010, Nature.

[31]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[32]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[33]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[34]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[35]  Dennis C. Friedrich,et al.  A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries , 2011, Genome Biology.

[36]  Yoon-Koo Kang,et al.  Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial , 2010, The Lancet.

[37]  Kenneth K Wang,et al.  Barrett esophagus: an update , 2010, Nature Reviews Gastroenterology &Hepatology.

[38]  Laurent Farinelli,et al.  Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. , 2010, Genome research.

[39]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[40]  R. Steele,et al.  Activating K-Ras mutations outwith ‘hotspot’ codons in sporadic colorectal tumours – implications for personalised cancer medicine , 2010, British Journal of Cancer.

[41]  Keith L. Ligon,et al.  Profiling Critical Cancer Gene Mutations in Clinical Tumor Samples , 2009, PloS one.

[42]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[43]  Hayyoung Lee,et al.  The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex , 2009, Nature.

[44]  J. Stamatoyannopoulos,et al.  Human mutation rate associated with DNA replication timing , 2009, Nature Genetics.

[45]  Ting Wang,et al.  The UCSC Genome Browser Database: update 2009 , 2008, Nucleic Acids Res..

[46]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[47]  E. Sahai,et al.  Rac Activation and Inactivation Control Plasticity of Tumor Cell Movement , 2008, Cell.

[48]  Jun Yokota,et al.  Frequent BRG1/SMARCA4–inactivating mutations in human lung cancer cell lines , 2008, Human mutation.

[49]  Obi L. Griffith,et al.  ORegAnno: an open-access community-driven resource for regulatory annotation , 2007, Nucleic Acids Res..

[50]  Yao-Tseng Chen,et al.  p53 in esophageal adenocarcinoma: a critical reassessment of mutation frequency and identification of 72Arg as the dominant allele. , 2007, International journal of oncology.

[51]  Roy C. Orlando,et al.  Mucosal Defense in Barrett's Esophagus , 2007 .

[52]  A. Sweet-Cordero,et al.  Requirement for Rac1 in a K-ras induced lung cancer in the mouse. , 2007, Cancer research.

[53]  R. Nishikawa,et al.  ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. , 2007, Cancer research.

[54]  C. Blackstone,et al.  Troyer syndrome protein spartin is mono-ubiquitinated and functions in EGF receptor trafficking. , 2007, Molecular biology of the cell.

[55]  M. Ruonala,et al.  Junction protein shrew-1 influences cell invasion and interacts with invasion-promoting protein CD147. , 2007, Molecular biology of the cell.

[56]  Zohar Yakhini,et al.  Discovering Motifs in Ranked Lists of DNA Sequences , 2007, PLoS Comput. Biol..

[57]  M. Sarbia,et al.  Lack of EGFR gene mutations in exons 19 and 21 in esophageal (Barrett's) adenocarcinomas. , 2007, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[58]  R. Holmes,et al.  Epidemiology and pathogenesis of esophageal cancer. , 2007, Seminars in radiation oncology.

[59]  G. Perez-Perez,et al.  Assessment of the toll-like receptor 4 Asp299Gly, Thr399Ile and interleukin-8 -251 polymorphisms in the risk for the development of distal gastric cancer , 2007, BMC Cancer.

[60]  Richard Lugg,et al.  Mutation analysis of 24 known cancer genes in the NCI-60 cell line set , 2006, Molecular Cancer Therapeutics.

[61]  W. Park,et al.  ERBB2 kinase domain mutation in the lung squamous cell carcinoma. , 2006, Cancer letters.

[62]  M. Guo,et al.  Gefitinib-sensitizing mutations in esophageal carcinoma. , 2006, The New England journal of medicine.

[63]  R. Pearson,et al.  Mutation analysis of PIK3CA and PIK3CB in esophageal cancer and Barrett's esophagus , 2006, International journal of cancer.

[64]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[65]  W. Park,et al.  Somatic Mutations of ERBB2 Kinase Domain in Gastric, Colorectal, and Breast Carcinomas , 2006, Clinical Cancer Research.

[66]  A. Malkinson,et al.  Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. , 2005, Journal of the National Cancer Institute.

[67]  J. Lacal,et al.  Rho GTPase expression in tumourigenesis: Evidence for a significant link , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[68]  P. Hainaut,et al.  p16 expression in Barrett's esophagus and esophageal adenocarcinoma: association with genetic and epigenetic alterations. , 2005, Cancer letters.

[69]  H. Welch,et al.  The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. , 2005, Journal of the National Cancer Institute.

[70]  A. Mazzoni,et al.  A Complex of Soluble MD-2 and Lipopolysaccharide Serves as an Activating Ligand for Toll-like Receptor 4* , 2004, Journal of Biological Chemistry.

[71]  X. Yao,et al.  Expression of seven main Rho family members in gastric carcinoma. , 2004, Biochemical and biophysical research communications.

[72]  M. Vieth,et al.  Mutations of BRAF and KRAS2 in the development of Barrett's adenocarcinoma , 2004, Oncogene.

[73]  Leslie Bernstein,et al.  A multiethnic population-based study of smoking, alcohol and body size and risk of adenocarcinomas of the stomach and esophagus (United States) , 2001, Cancer Causes & Control.

[74]  T. Sasazuki,et al.  DOCK2 regulates Rac activation and cytoskeletal reorganization through interaction with ELMO1. , 2003, Blood.

[75]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[76]  P. Bork,et al.  SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia , 2002, Nature Genetics.

[77]  Xiang-Jiao Yang,et al.  MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2 , 2002, Oncogene.

[78]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[79]  Tsung-Teh Wu,et al.  Mutations in β-Catenin and APC Genes are Uncommon in Esophageal and Esophagogastric Junction Adenocarcinomas , 2000, Modern Pathology.

[80]  M. Matsuda,et al.  Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins. , 1999, Biochimica et biophysica acta.

[81]  W. Dinjens,et al.  E-cadherin gene mutations are rare in adenocarcinomas of the oesophagus , 1999, British Journal of Cancer.

[82]  Frits Michiels,et al.  Matrix-dependent Tiam1/Rac Signaling in Epithelial Cells Promotes Either Cell–Cell Adhesion or Cell Migration and Is Regulated by Phosphatidylinositol 3-Kinase , 1998, The Journal of cell biology.

[83]  K. Yasumoto,et al.  Induction of Chromosomal Gene Mutations in Escherichia coli by Direct Incorporation of Oxidatively Damaged Nucleotides , 1998, The Journal of Biological Chemistry.

[84]  B. Reid,et al.  Barrett's esophagus and esophageal adenocarcinoma. , 1991, Gastroenterology clinics of North America.

[85]  K. Johnson An Update. , 1984, Journal of food protection.

[86]  Yao-Tseng Chen,et al.  p 53 in esophageal adenocarcinoma : A critical reassessment of mutation frequency and identification of 72 Arg as the dominant allele , 2022 .