Supporting in physics-based eRobotics-testbeds the pervasive employment of intelligent robot manipulators
暂无分享,去创建一个
[1] Kenny Erleben,et al. Stable, Robust, and Versatile Multibody Dynamics Animation , 2005 .
[2] Kenny Erleben,et al. Velocity-based shock propagation for multibody dynamics animation , 2007, TOGS.
[3] Stefano Stramigioli,et al. Contact impedance estimation for robotic systems , 2004, IEEE Transactions on Robotics.
[4] Alin Albu-Schäffer,et al. Decoupling based Cartesian impedance control of flexible joint robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).
[5] Anders Robertsson,et al. Force controlled robotic assembly without a force sensor , 2012, 2012 IEEE International Conference on Robotics and Automation.
[6] K. Hashtrudi-Zaad,et al. Optimization-based robot impedance controller design , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[7] Ian D. Walker,et al. A Simulink-based robotic toolkit for simulation and control of the PUMA 560 robot manipulator , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).
[8] Jürgen Roßmann,et al. Mental Models for Intelligent Systems: eRobotics Enables New Approaches to Simulation-Based AI , 2014, KI - Künstliche Intelligenz.
[9] Jurgen Rossmann. eRobotics: The Symbiosis of Advanced Robotics and Virtual Reality Technologies , 2012 .
[10] Neville Hogan,et al. Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.
[11] Oussama Khatib,et al. Commande dynamique dans l''espace op'erational des robots ma-nipulaters en pr'esence d''obstacles , 1980 .