Buckling of Elastomeric Beams Enables Actuation of Soft Machines

Soft, pneumatic actuators that buckle when interior pressure is less than exterior provide a new mechanism of actuation. Upon application of negative pneumatic pressure, elastic beam elements in these actuators undergo reversible, cooperative collapse, and generate a rotational motion. These actuators are inexpensive to fabricate, lightweight, easy to control, and safe to operate. They can be used in devices that manipulate objects, locomote, or interact cooperatively with humans.

[1]  Julia Kastner,et al.  Cats Paws And Catapults Mechanical Worlds Of Nature And People , 2016 .

[2]  S. Wereley,et al.  Soft Matter , 2014 .

[3]  P HollandDónal,et al.  The Soft Robotics Toolkit: Shared Resources for Research and Design , 2014 .

[4]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[5]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[6]  Leith Al-Nazer,et al.  Development of Rail Temperature Predictions to Minimize Risk of Track Buckle Derailments , 2013 .

[7]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[8]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[9]  G. Whitesides,et al.  Elastomeric Origami: Programmable Paper‐Elastomer Composites as Pneumatic Actuators , 2012 .

[10]  C. Keplinger,et al.  Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation , 2012 .

[11]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[12]  C. Keplinger,et al.  Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability , 2010, Proceedings of the National Academy of Sciences.

[13]  K. Bertoldi,et al.  Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures , 2008 .

[14]  Howie Choset,et al.  Design of a modular snake robot , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Zhigang Suo,et al.  Electromechanical hysteresis and coexistent states in dielectric elastomers , 2007 .

[16]  K. Bertoldi,et al.  Pattern transformation triggered by deformation. , 2007, Physical review letters.

[17]  Z. Suo,et al.  Method to analyze electromechanical stability of dielectric elastomers , 2007 .

[18]  S. Dubowsky,et al.  Large-scale failure modes of dielectric elastomer actuators , 2006 .

[19]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[20]  Blake Hannaford,et al.  McKibben artificial muscles: pneumatic actuators with biomechanical intelligence , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[21]  H. Berg,et al.  Cats' Paws and Catapults: Mechanical Worlds of Nature and People , 1998 .

[22]  José Manuel Gordo,et al.  Approximate Assessment of the Ultimate Longitudinal Strength of the Hull Girder , 1996 .

[23]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[24]  Koichi Suzumori,et al.  Microfabrication of integrated FMAS using stereo lithography , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[25]  Shoichi Iikura,et al.  Development of flexible microactuator and its applications to robotic mechanisms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[26]  Koichi Suzumori,et al.  Flexible microactuator for miniature robots , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.